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ABSTRACT 

^ The general topic of the research reported in this thesis is the 

study of nonuniform block sampling theory and its application to the 

study of correlation functions of sampled signals.    The research 

evolved from the specific problem of trying to reduce the odd hannonic 

terms which appear in the correlation function of hard limited and 

uniformly sampled sinusoidal signals.   These odd harmonic terns arise 

because of the synchronism between the periodicity of the uniform 

samples and the periodicity of the odd signal harmonics produced by 

hard limiting. 

The general approach to the problem is to use nommifbm stapling 

to reduce the undesirable periodicity effects and thus to reduce the 

odd hannonic terms in the correlation function.   A particularly useful 

class of nonuniform sampling functions for this application Is shown to 

be "block sampling function*;" i.e., short sequences (or blocks) of 

nonunifOrm samples which are repeated periodically in time. 

As a preliminary to a study of block iawyllng functions sad 

their application to the odd harmooie problem, a detailed study ox the 

Ceneral properties of correlation functions for large IV Signals with 

vniform sampling is made.   These results are then extended to the ease 

of sinusoidal signals with unifbm sanpllng to lUustratt UM role of 

both clipping and sampl Ing in the generation of the undesirable odd 

£ barmooic ten» la the oorrelatloa function.    UM wrlfbra lempllH 

correlation fUaetioa results ata« with the roealta of UM block 

UNCtASSIfllD 1 
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sampling spectrum analysis then form the basis for analysis of 

correlation functions of sinusoidal signals with nonuniform block 

v        sampling. 

In the study of correlation functions of large TU signals, two 

alternative definitions of sampled correlation functions are compared: 

the regular correlation function, and a quadrature correlation Auction 

consisting of an average of a regular correlation function and tbe 

correlation function of the Hilbert transforms of the correlated 

signals.    By eliminating the second haraonic sampling effects, the 

quadrature correlation function is shown to achieve more accurate 

correlation for deterministic signals and lower correlation variance 

for random signals.   A comparison of tbe sasyled quadrature cc. 2elation 

Amction variance fbr clipped and undipped narrowband random proceases 

shows that the variance far the clipped signals could be reduced by as 

■ueh aa 3 dB over the undipped signal variance by sampling at a 

sufficiently high rate. 

In exUnlinc the study of quadrature correlation function 

properties to sinusoidal signala, ualfOm aampliar. U shown to aake 
I 

, the correlation ftmction periodic (as a fenetien of frequency) vllh a 

repetition period equal to the aampline «"•*•» «dale cllppiiyt Utreduces 

•atronecus eorrelatioos for input signal frequencies which are odd 

■altiplos of the reference signal frequency.   When both cllppinc and 

«mifOm eaapltag are employed« each odd barmomic eorrelatlem IbaeUon 

* resfooae is repeated at period fisgiaaiy intervals «dUch are related 

to the aa^lli* roto, thws giviog rise to the odd hormooic pteblam IW 

•orrcUtlea fWnrtlome of simnaoidal slgsals. 

UNaASfMlfD 
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After proposing nonuniform block sampling as a possible solution 

to the odd harmonic problem, the frequency spectrum properties of 

ideal block sampling are studies in detail.    These properties include 

amplitude and phase characteristics of each spectral component, 

spectral periodicity conditions, conservation of spectral energy 

properties, and conditions for minimum variance of the sampling power 

•peetrun.   As an example of sampling spectrum anplitude shaping by 

choice of sample tines, a block sampling function example is presented 

which uses a pseudo-randon number generator for sampling time selection 

This sampling technique achieves a unique spectrum shaping by 

suppressing the spectral amplitude tor snail values of frequency, a 

property that is shown to be important in the reduction of odd 

hamonic responses in correlation Auctions of clipped sinasoidal 

•Ignal«. 

Oonaiderlns the quadrature correlation function of two clipped 

sinusoidal signals v.th block sampling a« a Auction of the two 

sinusoidal frequencies, it is shown that, although the odd haraoni* 

effect« are greatly reduced, certain "Worst Oase" coablaatiens of the 

two sinusoidal frequencies result la correlation Auctions uheae 

avenge value is greater Una those Ibr all otinr Arequeacy eonbiaa- 

ilOM.    la addition to deriving the crltieal frequency relatlonshlpa, 

aa »aalytlc eayressioa is «hialnsd relating the oorrelatloo Auction 

far Una« Morst Case freq^eaeles te the eoefflelanu of the block aw^llng 

fiaf^eniy apoetna».    tan eaperlaantal reaali«, based oa a digital carter 

«iutlailen, are afceea u verify UM aaalytUal aedel.    It U «M 

I 
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that by proper choice of sampling parameters, block sampling can reduce 

the undesirable odd harmonic correlation function responses due tc 

clipping and sampling by any desired degree. 

• 
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CHAPI'ER I 

INTRODUCTION 

1.1 General Statement of the Problem 

The general topic ot the research repor d in hi th si is h 

application of nonw.iform sampling heory to tudy of corr l on 

functions of sampled sigrAls that are limited to band of fr qu n~i s . 

In addition to nonuniform sampling he research considers eff c of 

uniform sampling and hard li.mi ing on h corr lation tunc ions of 

signals vi th lar e 'N produc s w 11 sinusoid . 'l'h r search 

evolved fro the specific probl o find a m hod o r due 

the odd harmon c erma which appear in h correla on function of 

sin sold signal which has b en hard 1 d a uniformly sampled . 

Th se d harmonic terms arise because of the synchronism b twe n the 

periodicity of he unifo samples and he periodicity of th odd 

s gn harmonics produced by hard limi ing. This research considers 

the use of a special class of nonuniform supllng-- ' lock sampl ng; ' 

i.e. nonuniform amples with a periodically recurrent pattern--to 

eliminate his synchronis and reduce the odd harmonic correlation 

function terms. 

1. 2 Importance of the Study 

The correlation function is an illportant analysis tool in a 

large number of applications ~5 , 26, 31, 32] . It is particularly 



2 

useful, f or example, in the study of the response of linear systems to 

random inputs [33 ) where deterministic analysis methods do not apply 

and in determining the statistics of signals in the presence of noise 

[13). Since the correlation function and the power spectrum are 

Fourier transforms of each other, it is also important in spectral 

analysis [13 ) . Other applications include Hilbert transform theory 

[14 ] and he correlation func ion method [14] for finding oise 

statistics at the outp of certa n no !near devices. 

'The operations of sampling and a hard limiting (clipping) have 

become co11111on in many physical sys ems L 29, 26, lit , 35] . These 

operations are o en n ces ary because of physical limitations which 

make available only sampled information o~· signal polarity information. 

Sampl ng has become an important item in modern coiiiiiUllica ion systems 

since be acven and wide spread use of digital echn ques. Examples 

of the use of sampllng include pul.ae code modulation (FCM) systems and 

pulsed radar . In mos sampling a plications n the literature, the 

cone rn is recons ruction of the original signal from its samples [14] . 

The sis for represen ing continuous signals by sampled values taken 

a discre e ime ins an s lies 1.n the well-known sampling theorems [4] . 

For signals limited to a frequency band, the sampling theorems are 

ually presen ed in erms of quadrature sampling [20]; i.e., taking 

samples of both the signal and its Hilbert t ransform at a rate 

determined by the signal bandwidth. In this thesis, we are not 

concerned with the reconstruction of the original signal from its 

sampled values, but in the effects of s~ling on the auto-correlation 
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function of a signal or on its cross-correlation function with other 

signals. 

A companion process to sampling in many digital applications is 

that of signal quantizing . Many communication systems require that 

signal samples be converted to digital numbers at some point within 

the system so they can be manipulated by digital computers or other 

digital devices . An important special case of quantizing is hard 

limiting [37, 23], or clipping, in which only two levels of 

quantization; i.e . , signal polarities are employed. In this research, 

we will consider the implications of hard limiting on the correlation 

function of sampled signals that are limited to a band of frequencies 

[30, 38] . 

Although most of the sampling theory work in the literature is 

concerned with uniform sampling, many important applications [36, 28] 

either intentionally [1] or unintentionally [2, 9] make v~e of 

nonuniform sampling. For this reason, a good deal of research [!11, 

2L, 5, 21, LO] has been done on the problem of signal reconstruction 

fro111 nonuniformly spaced samples of a signal. The effect of nonuniform 

sampling on correlation function properties of sinusoidal signals is 

t o be a major consideration in this thesis . 

1.3 Previous Related Studies 

The special class of nonuniform sampling fUnctions--those with 

a periodically recurrent pattern--applic~ in this thesis to the problem 

of reduction of odd harmonics in correlation functions of clipped 

sinusoidal signals has been considered previously by several authors 
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[41, 24, 36, 7] . Yen [41], using the term "Recurrent Nonuniform 

Sampling, " and Kohlenberg [24 ] , using the term "p th Order Sampling, " 

both consider the problem of reconstruction (interpolation) of a 

continuous signal from its nonuniformly sampled values. Tou [36 ] , 

using modified z-transform theory, analyzes the response of sampled

data systems using "Cyclic Vari&.ble-Rate Sampling, " while Beutler and 

Leneman [7] consider "Periodically Recurrent " nonuniform sampling 

functions as a special class of processes in the general theory of 

stationary point processes . 

More specifically, Yen [4] derived a reconstruction formula 

for low pass signals {bandlimited to W Hz) which were sampled by a 

recurrent nonuni form 53mpling func t i on with N samples i n each 

periodic sample ' block ·· . Kohlenberg [24 ] derives a more gener~l method 

f or obt aining reconstruction f ormulas for the same sampling func t ion, 

requiring only thar he sampled signal possess a Fokrier Transform. 

While Kohlenberg ' s method applies in principle to signals for an 

arbitrary number of samples per recurrent sample block, he applies 

it or.l y f or = 2 obtaining a second-order sampling reconstruction 

formula. It is apparen ~hat his me t hod becomes very cumbersome for 

N > 2. Kohlenberg expresses recurrent nonuniform samp ir~ with N 

samples per block as t he sum of N uniform samplir~ functions with 

different time origins where the !.l.Iliform samp ing period of each function 

is equal to ~he block int erval length in seconds. This representation 

proved useful in the study of ' Block Sampl ing ' in this thesis research. 

Tou [36] models nonur.ifonn block sampling in a slightly 

different way, shift ing the continucus signal (in parallel) with N 
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different time advances (corresponding to the time of each sample 

instant in the block), sampling e.ll N signals at the same instant, 

delaying each sampled signal by an amount equal to the time advance 

before sampling, and finally sU!IIIli.ng the N sampled signals to form 

the resultant sampled signal. A modified version of Tou' s model was 

found useful in Chapter V for computing the correlation function of a 

eli~~ sinusoidal signal with nonuniform block sampling. 

Block sampling is shown by Beutler and Leneman [7) to be a 

special example of a S. P. P (stationary point process) if the initial 

sampling instant is e.llowed to be random variable. Studying the 

problem of analyzir.g stochastic sampling of wide-sense stationary 

random processes, Beutler, Leneman and Lewis [6, 7, 2 , 28) formulate 

a basic theory for S . P.P. der ving stat sties on the number of points 

in intervals and on forward and backward recurrence times, and apply 

the theory to a number of problema including spectral analysis of 

randomly modulated processes and mean square error in t 1e 

reconstruction of signals from randomly timed samples. In this thesis, 

block sampling will be treated as a deterministic process, making use 

of Four:ter transform theory to derive and study its complex spectrum 

properties . 

1 . ~ Scope and Limit& ions of the Study 

The basic topic of this research--the study of nonuniform block 

sampling and itr. application in reducing the odd harmonic terms in 

correlation tunc~ions of clipped sinusoidal signals--is covered in 

Chapters rr sod V. In Chapter IV, nonunifom ''block sampling '' is 
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defined and its spectral properties are derived. These results are 

then applied in Chapter V to the odd harmonic problem in correlation 

f'unctions. Experimental results from a dici tal computer simulat ion 

are include to verifY some of the theoretical results. 

As a preliminary to the nonuniform sampling work of Chapters IV 

and v, a study of the general properti s of corr lation fUnctions for 

large 'lW signals including the efiects of uniform sampling and 

clipping is made in Chapter II. These result are th n extended in 

Chapter III to quadrature correlation fUnctions of sinusoidal 

signals illustrating the role of both clipping and uniform sampling 

in the generation of he odd narmo ." c correlation function terms. 



CHAPI'ER II 

CORRELATION FUNCTION PROPERTIES OF SIGNALS WITH LARGE TW 

THAT ARE IMITED TO A BAND OF FREQUENCIES 

2.1 Definition of Regu+ar and Quadrature Correlation Functions 

In this chapter, a study of the general properties of 

correlation functions of signals with large time-candwidth (TW) 

products will be made. After comparing two alternative definitions 

fo r correlation fur.ctions of uniformly sampled signals, the effects 

of clipping will be cons dered. 

The two alternative correlation function definitions to be 

compared are the regular, or standard, sampled correlation function 

[20 ] and he quadrature correlation function which makes use of 

Hilbert transform pairs of signal samples. 

The regular correlation funct ons 

defined by 

M 

(MT ) 1 x (mT ) y(mT ) = M s s 8 

m=l 

and 

M 

"(MT ) 1 ) 1\ = M x{mT ) y{mT ) , s s s -
m=l 

(MT ) 
s 

1\ 
and (MT ) s are 

(2.1) 

(2.2) 

where T is a uniform sampling period, M is the number of samples s 
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in a signal durat i on T, x(t) and y(t) are real-valued s ignals which 

can be either deterministic or random, and ~(t) is the Hilbert 

transform of y(t) . The usual correlatinn function dependence on 

time shit't -r can be found by setting x(t) in Equations (2.1) and 

(2.2) equal the time shifted version of itself; i.e., by setting 

x{ t) = x ( t - ; ) . The envelope of the regular correlation function 

can be written as 

( (MT ) 
s 

(2.3) 

An analytical model for the regular correlation function is 

shown in Figure 2. 1 using complex signal representation [15] . I n this 

model, the sampled pre-envelope py(mTs) of the reference signal 

y(t) , defined by 

p (MT ) = y (mT ) J ~ (mT ) , y s s s 

is correlated with the sampled input signal x(mT
8

) giving the 

following complex correlation function: 

z (MT ) s 

·-

= 

M 

~ > 
m=l 

M 
l ) M 

m-=1 

(MT ) s 

x (mT ) p (mT ) s y s 

x (mT ) y (mT ) s s 

J "(MT ) . 
s 

j 

M 
l ) f\ 

M x{mT ) y(mT ) s s 
r.l=l 
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Thus, the complex correlation function    z(MT )    contains both s 

quadrature components,    »(MT )    and    <t>(MT ), and the envelope, 
s s 

• £.(MT ); i.e., 
s 

Re[z(MT )]    =    «»(MT )    =    'in-phase'' component of the regular s s 

correlation function, 

Iin[z(MT )]    =    «'(MT)    -      quadrature phase'' component, s s 

and 

z(MT  )        -     L(Mr )    -    regular correlation function envelope. 
5   I S 

We will next consider a modified version of the regular 

correlation function model of Figure 2.1.    The "Quadrature Correlation 

Function ' model of Figure 22 differs from the    Regular Correlation 

Function   model of Figure 2.1 in that,  for the quadrature version, 

Hubert transforms are taken of both the input and reference signals 

rather than just the reference signal.     Instead of sampling the signal 

x(t)    every    T      seconds as shown in Figure 2 1, the quadrature s 

correlation requires pairs of samples,    x(2mT )    and   x(2mT ),  every 
s s ■* 

21     seconds, giving the same total number   M   of samples during the 

finite signal duration, where   M   is assumed to be an even integer. 

The resulting equations for the in-phase component    «.(MT ), tne 
«i       s 

A /~ 
quadrature-phase component    *Q(MT ),  and the envelope   c.-(MT ) of 

the quadrature correlation function are 

warn 



c 

NOTE: H INDICATES THE OPERATION OF TAKING THE HILBERT TRANSFORM. 

«(t) 

5^ 
SAMPLER 

+ ^ P?l1)«x(t)-JK(1)     >    p^lZmT,) 

y(t) jy(t)     >   Py(2mT,) 

P?P» ±T/2 
M
 m«l 

11 

IQ(MTt) 

{mZT,} 

Figure 2.2   Analytic Model of Quadrature Correlation Function 
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_-J 

1\ 1\ 
(x(2mT

8
) y(2mT

8
) + x(2mT

8
) y(2mT

8
)), 

m=l 

m=l 

2 (M'I ) 
Q s 
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(2.ll) 

(2 ·5) 

(2 .6) 

A comp&rison of Equations (2 . ll) and (2 .1) show that both types of 

correlation function defini ions require he same number of 

numerical comput ations (products and sums) per second to caapute one 

value of the correlation function . However, successive values of the 

quadrature correlat1on function can on y be computed at 2Ts second 

intervals instead of at Ts second intervals if the time delay 1 

is performed after sampling. 

In the analytic quadrature correlation function model shown in 

Figure 2.2, the pre-envelope of the reference . signal y(t) is 

correlated with the complex con ugate of the pre-envelope of the input 

signal x ( t) giving the f ollowing equation for the complex quadrature 

correlation function, zQ(MT
8

): 



1 
= M 

M/2 

= ~ )_: 
n:=l 

13 

[x(2mT ) - j Q(2mT )] (y(2mT ) 
s s s 

[x ( 2mT ) y(2mT ) s s 

" " (x (2mT ) y (2mT ) - x (2mT ) y ( 2mT }] s s s s -
m=l 

Taking the real and imaginary parts and the absolute value of zQ (MT s) 

gives: 

Re (zQ(MTs ) = Q(MTs) , the in-phase component, 

(zQ(MTs) ) 
1\ 

Q(MTs) ' Im = the quadrature-phase component, 

/ zQ(MTs)l = £ Q(MT
8

), the correlation envelope. 

2.2 Comparison of Reb~ar and Qu&drature Sampled Correlation 

functions 

A. Elimination of the Secor~ Harmonic by Qu&drature Correlation. 

Consider the equations f or the two basic correlation techniques being 

compared, regular correlation and qu"d:ature correlation. Fran 

Equation ( 2 .1 ) , the regular correlation function "in-phase " component 

is: 
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M 

(MT ) s 
1 

= M (2. 7) 

m=l 

and, from Eq ation (2 .4 ) , the quadrature correlation function 

"in-phase ' componen~ is: 

1 
= M 

- 1 

" 1\ x (2mT
8

} y (2mT
8

)). 

(2.8) 

Equa ions (2. ) and (2. 8) are both sampled approximations to the 

des1red analog correlation function given by 

T 

(T) 1 
if x ( ) y ( ) dt, 

0 

(2.9) 

where x ( ) and y(t) are continuous rel.l.-valued t'unctions that are 

approxi a ely limi ed in ti..JDe T and bandwid h W s ch that 

>> 1 e basic q es i o tha we no wish o examine is how 

ace r ely he s ed corre atlon ~nctions of Equa ions (2.7) and 

(2 8) approxuma e he desired cont in o~s correl a ion chon o f 

Equat.i n(2 .9) f or two specific cases . The t cases considered here 

are: (1) x ( ) and y ( ) are both deterministic functions for 

which Fourier transfo can be written [as a special caae , y(t) 

could be a delayed v~rs on of x (t) ] , and (2 ) both x (t) and 

y ( ) (eit.her deterministic or random) can be represented by 

nar ow-band r resent at ions of the form [37] 
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s (t) = a (t) cos t - b (t) sin t , 
0 0 

where a (t ) and b (t) are l ow-pass func t ions and is t he center 
0 

frequency of the signal s (t) . Case 1 t hus cons i ders the sampling 

errors i n obt aining the correl a tion funct i on bet ween t wo det erministic 

signals, and Case 2 considers t he effect s of sampling on t he 

correlation func t ion variance when a r eference sig i s correlat ed 

wit h a narrow band r andom process . In bo h cases, i t will be found 

tha~ the sampl ed quadrature correlat i on funct i on represent s a more 

accurat e approximation ~o Equation (2. 9) if the sampling rat e is 

suffi c i ently high and that the sampl i ng errors associat ed with t he 

regular correl ation function are a function of a s1gnal t andwidt h, 

cen~er f requency, and sampling rat e. 

The bas i c phenomenon hat makes quadrature correlation more 

ace rate than regular correla i on in bo~h cases is that quadra · ure 

correl a ion elimina t es the second harmonic in the frequency :;pec t rum 

of the unsampled pr oduc _ of x ( t ) and y (t ) . This will be shown by 

obtaining express1ons f or the Fourier t rans forms of the products 

[x (t ) • y (t)) f or regular correl at i on and ~ [x (t) y( t) ~ i (t) ~(t) ] 

fo r quadrature correl atioc. 

Considering Case 1 , l e 

t r ansf onDS of x (t ) and y(t) , 

the Fourier t r ansforms of ~ ( t) 

X( ) and Y( ) represent t he Fourier 
1\ 1\ 

and l e t X(w) and Y(m) represent 

and i (t) . Assume x(t) and y(t) 

are det erministi signals whose non-negligible positive spectrums, as 
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illustrated in Figure 2.3, are confined to the frequency interval 

ll + ll) ( - -) < ill < ( where ill is the center of the frequency 
0 2 0 . 2 ' 0 

band, ll = 21tW, and w is the s ignal bandwidth in Hertz. According 

to [15 ] ' " X(ill ) " and Y( ) can be expressed in tenns of X(ill) and 

Y( ) as 

~( { - jXI ) for >O 
) - (2 .10) 

jX( ) for ill < 0 

and 

" - j Y( ) for >0 
Y( ) = (2 .11) 

jY( ) for <0 

The Fourier t ransfonn FR ( ) of the regular correlation 

product x (t) y (t) is: 

CD 

FR(ill) =:f x (t) y(t ) J = x(t) y(t) e - j 
d t.. (2.12) 

-co 

S bs It~:i ng tbe express!on£ f~r ~he inver ~ e t ransformc of x{ ) 

and y { . ) into Equation 2 . 12) glVes FRf ) as the convolut i n of 

X(' ) and Y( ) : 

1 
2n 

co 

- co 

X(B) Y( t3 ) df3. 

Likewise, for the prod'.lc t i'( ) . 9' ) , i ~ 

co 

~( t) ~ (t) e-J~ dt, 
- -:o 

then 

(2 .13) 



IX(w)l 

t -16~ 

I 4l 41 I . ., 
-2-. -.. 0 .. 2.,. 

I 41 f'"'l tr ., 
-2--. -... 0 .,. 2w. 

Figure 2.3 Typical Non-Zero Signal Spectnua Ranges 

Figure 2.4 Non-Zero Spectral Range tor Regular Correlati on 

I -2.,. 
Figure 2.5 Non-Zero Spectral Range tor ~ture Correlation 

17 
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1\ 1\ 
X(t3) Y( t3) df3. (2 .14) 

The spectrum of the quadrature correlation product 

~ [x (t) y(t) 

1\. ,.. 
x (t) y(t) + x(t) y (t)] 

= (2 .15) 

An examinat i on of t he frequencies at which FR( ) and 

FQ(~ ) are non-negligible will sho that, for FQ(w) , the second 

armonic erms arc nd = ao
0 

cancel hen the sum of FR(w) and 

F2( ) is t aken 1n Eq ati on (2.15) . Consider firs the non-neglig1ble 

regions of he regular correl ation spectrum FR ( ). The graphical 

convolu ion shown 1n Figure 2. of X{ ) and Y( ) from Figure 2.3 

s .ows ha he non-negligible port ons of FR (ill) ere given by 

- 6 < w < A, (modulation t erm ) 

(ao - 6)< w < (ao A) , (positive seco~d 
0 0 

( - - A) < 
0 

< ( - ao 
0 

harmonic ) 

A) , (negative second 

harmonic). 

(2.16) 

The corresponding express ions for FR(· ) obtained from Equation (2.13) 

are: 
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-(!) + tJ./2 
1 

0 

FR(w) = X(t3) Y( t3) dt3 
2Jt 

-w - tJ./2 
0 

(.1) + tJ./2 
1 

.... 0 

+ - J (.1) - tJ./2 
X(t3 ) Y( t3) <it', 2Jt 

0 

f or - !J. < w < !J., 

+ tJ./2 
1 0 

= X( ) Y( t3) <it', 2Jt 
- tJ./2 

0 

for (2w 
0 

- !J.) < w < (2w 
0 

!J.)' 

+ tJ./2 
1 0 

= X(t3) Y( t3) ' 21l 
- tJ./2 

0 

for ( - 2w - !J.) < 
0 

< ( - 2w 
0 

!J. ) • 

(2 . 17) 

A" " An examinat i on of F 
2 

( ·) = J [x ( ) y ( t)] from Equation ( 2.14 ) 

shows the same non-negligible spectral regions given by 

Equa ion (2 . 16 ) , where F
2

(w) can be derived using the Hilbert 

ransform spec t ral properties of Equ&.tiona ( 2 . 10 ) and ( 2 . 11) as: 

tJ./2 

F2 ( ) 
1 [ jX(t3) j [ - JY( t3) J ~ = 2~ 

0 
- tJ./2 

(.1) + tJ./2 
l J 0 - tJ./2 

[ - jX{t3)] [ j Y(t3)] , 
2Jt 

0 

for - !J. < w < !J., 



1 = 21C 

1 
= 21C 

+ 6/2 
0 

J- -6/2 
0 
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( - jX(13)] (- j Y(m-13)] <113, 

f or ( 2ro - 6 ) < w < ( 2ro + fJ. ) , 
0 0 

[ jX(13)] [ j Y( 13)] dt3, 

fo r ( - 2ro - 6) < U' < ( -2ro + 6). 
0 0 

(2.18) 

Combining FR (w) and F2(w) from Equations (2.17) and 

1 (2.18) t o give FQ(w) = 2 FR( ) + F2 (w)] for quadrature correlation 

yields: 

I<' w) 
Q 

1 = FR ( ) = 21C 

J 0 

6/2 
1 
2 

- 6/ 
0 

= o, 

= 0 , 

X(13) Y(w-13) dl3 

0 
- 6/2 

X(13) Y(w-13) <113, 

for -6 < w < 6 , 

f or (2ro - 6) < w < (2ro + 6), 
0 0 

f or ( - 2ro - 6) < w < ( - 2ro + 6). 
0 0 

(2.19) 

Thus, from Equations (2.17) and (2.19) , FQ(w) and FR(w) 

are i dent ical f or -6 < 6 and FQ(w) is zero elsewhere, while 

FR ( ) contains second hannonic t erms around w = + 2ro as 
- 0 
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illustrated la Figures 2.*  «nd Z.5.     It will now be shown that tie«« 

■ecoad tvuvcnlc t«rmt  la the regular csrreletion product spectpoa 

produce Mapllac «rrcr« which are not present  in the qued.-mtuie 

correletion fUDCtioa. 

B.    Correlatioa Accuracy for Defrminiitic Signals.    In order 

to evaluate the correlation function swpling errors when both the 

iaput and references are deterainistlc signals   (or tine.delayed 

versions of the saae deterainlstic signal), consider first the problem 

of representing the integral  of an arbitrary Fourier transfomable 

function    f(t)    by the SUB of uniformly spaced samples    f(aT  )    of 

the function. 

Let    f(t      be any Fourier transforaable deterainistic real- 

valued signal defined for 0 < t < T and essentially zero elsewhere. 

We can represent    f(t)    in the tiae Interval      -•  T]    by the complex 

Fourier series: 

f(t) * v   '*- 

2rnt 

(2 20) 

n=-» 

where Znn 

f(i) e dt, (2.21) 

c 

Next, consider sampling ft) st s uniform sampling rate f    T > 
8    s 

where T    time between sumples in seconds, and averaging the 

resultlr« N samples; i.e.. 
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N 
1 
N 

f(mT  ) 

m«l 

1_     \ 
NT      /_ 

m=l 
/_ 

n=-'» 

c    e n 

.2itnm 
N 

(2.22) 

Since the Fourier series for    f(t)    in Equation (2.20) is 

-ßf    (tlT) -ilf    t 
periodic with period    T    and since    e      " =    e 

the integral of Equation (2.21) for the coefficient    c      can be 

rewritten as: 

T/2 

'n   =    j        W 
-T/2 

and Equation (2.22) as 

.2jtn    , 

dt, 

1     \ 
N 

f(mTs) 

m=l 
NT     /_ 

n=-oo 

r T/2 42«n + 
/ f(t) e      i dt 

.  -T/2 

N      .2nnm 

y 
m=l 

A N 

V       0  N Substituting     )      e 

N        .2nn 
a~ in (1 - ej2nn) 

—.m  ^ 
m-1 (e"J N -1) 

7TO ^ \ 

0 for n ^ kN 

N for n = kN 

where k is any integer, gives 

i     )      f(»Ts) 
m=l 

00 T/2 

k=_oo    -T/2 

.2«kN 
-J- 

dt.     (2.23) 

Moving the    k = 0    term from the right-hand side of Equation (2.23) 

N 
to the left-hand side and noting   •=   =    f     gives 

X s 

mmmmmmm 
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c 

N 

N 
m=l 

f(mTs) 

1/2 

1 
T 

f(t) dt 

-J2rtkf t 
s dt, 

k=-oo 

(2.2U) 

where E-, is the error in representing the integral — / f(t) dt 

N 

by the discrete sum   TJ     )      f(raT ).    If the inverse Fourier 

m=l 

00 

Transform f(t) =  / F(2«f) e^^^ df is substituted into the 

right-hand side of Equation (Z.Zk),    ET becomes: 

= 11   / 
T/2 

k=-oo 

k^O 

-T/2 

-j2jtkf t 
F(2jtf) eiZnft df e S    dt 

/ i       /T/2        J2«t(f.kf ) 

k=-oo -00 

k/0 

dt 
.T/2 

df 

00 00 

I J 
k=-oo -o 

k^O 

sinitT(f-kf ) 
F(2nf)        ffT(f-kf )       df- v        s 

(2.25) 

c Equation (2.25) can be simplified further by writing   F(2jtf)    in 

terms of its real and imaginary parts    F(2rtf) = rF(2itf) + JiF(2nf) 

-wmmm 
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to give 

2* 

^ = L  - T'2r.t) 

r        «InrTlf-kf  ) 

ir(2'f)        Tfmn   ** 

The second Integral is zero because the integrand Is ar odd function 

of frequency.    The first  integral can be reducea to the integral over 

positive frequency since the integrand is an even function of 

frequency.    Thus,    E.    becones 

slmrT(f.kf   ) 
(I.K) 

k/0 

For a given      F(2nf),    T,    and    f ,    Equation (2.26) could be used to 

compute the error    E_. 

Further simplification of Equation  (2.26) results In «any 

cases for signals with large TW products.    If   « <:•   W %nd      f(2«f) 

is approximately constant  for    (f    - «) <  f <  (f    ♦ —),  Equation (2.26) 

approximately reduces to 

2 ) rF(2«lcfg) 
8ln«T(f-kf ) 

o        s 

If f > > •=  , the above integral is approximately equal to « 
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B'kT   I  e'«T   ) I, (kT  ) I, («T   ) cot ^ kt    cot u. uT lilt -      • og 

- S,'kT      V«T   ) eo« « kT    sin u ■! .      «      .      • as as 

5,'kT  x S,'«T  ) slu - kT    sin u ml 
2s2s OS os 

zals os os 

«M th* «spr«sslofl for   y(kTa) jr(»T )    Is Itentlcal with ••ch    N 

r«plM:*4 t/ C  .     Dtfin« lh» c.rrtl»ll->r. functions 

n'kT/  n'«T  1    ?    •       ,;k-«)T  :. 
s ■ nn ■ 

VMVVV ' ^ ^k-)T.i  s  •ilMl
:(-k)V 

* •      :(»-k)T)t II2X2 s 

»i'^s^r^s1  T   S^   'k-)Ts,   •   ••H1M2 'Wt^ 

•t«r« f r    fc 

»;%. 
n    E . 

I  2 

•   1 

1   Z 
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Substituting Equations  (2.38) and (2.39) into Equation (2.^0) gives 

2    2 M 
r 2     o-o 

2
0 

2 ü. r 

m-1 

+  •N1N2
(B,T8) ^E^^S^   + C0S ^»V^N^V  ^E^/^s) 

XN2^) ^E^^^s) 

* »^ 2%»T
8^N1N1

(mT8)  V^V 

:iEl(mTs)]) >  JNN (mTs)  JE^  (aiT»-   ^ {2 U) 

The In-phase quadrature correlation function for these same 

zonditions is, from Equation (2.M: 

»Q    -    % :n(2mTs) y(2mTs) * Ä(2mTs) ^(2mTs)l. 

m-1 
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Frrm the above equations,    «    [(k-m)T  ]    and    »    L(k-m)T  j  can be 
'      nn s yy 's 

written as 

t     [(k-ffi)T ]    -    o.. .. [(lc-m)T    cos a; (k-m)T nn  v       's N. N 'v        's ov       ' s 

+ *M M [(k-m)T  ] sin UJ (k-ffi)T , (2.36) ^ N s o s 

and 

*     [(k-m)T  ]    ^    9„ „ [(k-in)T ]  cos üJ (k-m)T 
yy s EiEi s o^      ' s 

■*- *E E  [(k-m)Ts] sin ^(k-m)^. (2.39) 
11 

cr_    from Equation (^.37) now becomes; 

K M 
2 1 \ \ 

M 
)      «     [(k-m)T ]  *    :(k.m)T ] nn x s     yy s nn 

k-1     arl 

Ü 
1 \ 

M 
»    (0)  ♦       (0) 
nn        yy 

m- 1 

. 

+  2 

M Jl 
\ 

k-1     ml 
k > m 

*     '(k-m)T  ]   J       (k.m)T  ] 
nn  '       ' sJ    yy•v       ' sJ 

<» 
• ► 

2    2 cr    o _ 

M M 

M 

m»l 

m, 
M'    nn      s      yy      s 

(2.10) 
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The mean value of !t'A is zero and the variance is 

r 2 2 1 
M/2      M/2 

[n(2kT ) y(2kT  ) +^(2kT ) y(2kT )] 
»5 So 

k=l      m=l 

[n(2mTs) y(2mTs) + Ä(2raTs) ^(2mTs)] 

M/2      M/2 

M 
[n(2kT ) y(2kT ) n(2mT  ) y(2mT ) 

s s s s 
k=l     m=l 

+ n(2kT  ) y(2kT  ) n(2mT ) y(2mT  ) s s s s 

+ ^(2^  ) y(2kT  ) n(2mT ) y(2mT ) 

+ rJ(2kT ) y(2kT ) n(2mT ) y(2mT )], (2.1+2) 

1 

The first expectation in Equation (2.^2) is given by the regular 

correlation function result of Equations  (2.38)  -  (Z.ko) as 

n(2kT ) y(2kT ) n(2inT  ) y(2mT ) 
s s s s 

$N N [2(k-ni)Ts] cos 2a)o(k-ni)Ts 

f r 

+ $N N [2(k-in)Ts]  sin 2a)o(k-m)Ts 

*„ -, [2(k-m)T    cos 2m (k-in)T 
&■,&•, s o s 

+ *„ „  [2(k-m)T ]  sin 2to (k-m)T 
E E  L   v       '  sJ ov       's 

(2.43) 

I 

„^a^MUBMWMWHHMMi 
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The fourth expectation    n(2kT ) p(2kT  ) n(2mT ) y(2mT )    can also be 
s s s s 

shown to be given by Equation (2.^3).     Similarly, the second 

expectation in Equation {2.kZ) is: 

n( kT  ) y(2kT  ) n(2mT ) y(2inT ) 
s s s s 

[n(2kT ) n(2mT )] 

I 

[y(2kTs) ^(2mTs)] 

-*N N [2(k-in)Ts]  sin 2üüo(k-in)Ts 

+ 0.. .T [2(k-m)T ] cos 2ü> (k-m)T 
^Nj,    v       's ov       ' si 

.*E E [2(k-in)Tg]  sin 2cDo(k-m)Ts 

+ 0E E [2(k-m)Ts] cos 2u)o(k-m)Ts , s 

(Z.kk) 

 nM»ua»^ 

■■   ■ ■ ■ m i»^— MMHMM 
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and the third expectation becomes: 

37 

r 
n(2kTs) y(2kTs) n(2mTs) y(2mTs) [ri(2kT ) n(2inT )] v       s s 

[y(2kTs) y(2mls)] 

»„ ,. [2(k-m)T ] sin 2a: (k-m)T N1N1     
v       ' s ov s 

<fN N  [2(k-m)Ts] cos 2a)o(k-m)Ts/ 

o_, „  [2(k-m)T ] sin 2CD (k-m)T 
E^  L   v       's ov       's 

•t»    „ [2(k-ffl)T 1 cos 2CJü (k-m)T , 
E-E L   v        's' ov       '  s( 

(2.1*5) 

■HMaMMtfBi 
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can now be obtained from Equations  (2.^2) -   (2.J*5)> 

M/_2      M/2 

k^l     m-1 

.^^(k.rn)^]   ^ ^(k-m)^], 

2    2 

M M 

My 2 

ra- L 
^N^/2^) \E^Ja'Is) 

f \N2^
TS)\E2^

T
S^ ^-r)- (2.U6) 

A comparison of aR        from Equation {2.hi) for the regular 

correlation function and    a«      from Equation (2.46) for the quadrature 
W 

correlation function shows the presence of second harmonic terms in 

2 2 2 oR     which do not appear in    aQ  .    Thus, while    aQ      depends only 

upon the relation between the sampling period    T      and the signal 
s 

2 
bandwidth   W,    a-r,      also depends upon the center frequency   cu     of 

rt " 0 

the signal spectrum.    This is illustrated in the example derived in 

the Appendix for the case where n(t)    is bandlimited white noise 

with a flat power spectrum for     (f   - —) < f < (f    ^ ö1)-    For this 

2 2 
example,    crD      from Equation (2.1+1) and    a_      from Equation (2.U6) 

are plotted in Figures 2.6 and 2.7, respectively,  for   rr   "- 9    and 

i      i 

—mm 
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a    2TVf    product  ot 50,     Figure 2.6 shows that the regular correlation 

variance can be as nuch as    C    to    3  IB higner than the quadrature 

correlation variance of Figure Z 7 depending upon the relationship of 

the sampling rate to    f^    and    W.     For this exanple,  not  only  is the 

effect  of the second harmonic nissing in Figure 3  7, but tne quadrature 

correlation function variance is seen to be constant at about 

2 

-Q        2rw   ' ^- " 

for all    f    > W. s — 

To summarize, for the quadrature correlation function, the 

sampling error E was found to be zero and the correlation variance 

2 A      A    / 
aQ  was found to be a constant independent of f  for f > A/2T. 

However, for the regular correlation function, both the sampling 

error and the correlation variance were found to have undesirable 

second harmonic terms at some values of f . 
s 

2.3        Comparison of Quadrature Correlation Functions for Clipped 

and Undipped Signals 

In this section, we wish to consider the properties of the 

u(t)   =    sgn x(t) 
•1 for x(t) < 0. 

■ 

i 

quadrature correlation function for a special class of functions- * 

clipped narrowband signals. The relationship between a real-valued 

function x(t) before clipping and. its value u(t) after clipping 

is given by 

1 for x(t)  > 0 

• 
•• 



I 

Hard limiting thus  destroys all    amplitude" infcncaticn in    x(t) 

and retains the    phase ' inforaatiDn in the sense that only the zero 

axis crossings   zt    x't"    are preserved in    u(t). 

The analytic model for the quadrature correlation function for 

clipped signals shown in Figure 2.5 differs from the quadrature 

correlation function model for undipped signals of Figure 2.2 only 

by the fact that    u(t)    and   v(t)    are hard limited versions of the 

signals    x'O    and    y(t).    The quadrature correlation function, 

Equations   (2 ^) -   >2 5), can thus be used to describe the clipped 

correlation functions of Figure 2.6 by replacing   x(t) by sgn   x(t) 

and y(t) by sgn y(t). 

We wish to compare the clipped and undipped quadrature 

correlation functions of   x(t)    and   y(t)    for two cases : 

'1]    x(t)    =    c s(t)    and   y(t)    -    s(t -   T) are both equal to the 
s 

same narrowband gaussian signal    s(t)    but with different relative 

amplitude    a  , and    ^2] y(t)    -    s(t)    and x(t)    -    o n(t), a member s n 

of a wide-sense stationary gaussian random process.    Let 

n(t)    --    lUt) cos a t - IL't) sin u t 1 o 2 o 

and 

i s(t)    --    E,{t) cos c t - E_(t) sine t, v 1 o 2 o  ' 
i 

where 

Nl2(t)     =    N22(t)     z   1 

**     

,.      I-      ^ E1
2(t)     =    E2

2(t)     --  1 
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kk 

and 

E (t) N (t - T) = 0 for i, o = I, 2. 

The values c      and o  account for differences in relative amplitude 
s     n 

between x(t) and y(t). 

Let the quadrature sampling rate be at the Shannon rate of 

f  = ■rjs- = W sample pairs,  .x(2nT ), x(2nT )], per second. 
S u -L s s 

s 
The Hubert transform of    s(t)    is given by 

s(t) E.ft)    sin -.  t  + E0(t) cos u t 
i o d o 

and the pre-envelope of   s(t)    by 

A ^o1 

s(t) -*■ js(t)    --    .E^t) ' jE_(t)rcos o t + j sin u t]    -    f(t) e        , 

where    f(t)    is the low pass modulation function whose spectrum is 

equal to the positive spectrum of   s(t)   translated down to zero 

frequency and 

2ff(0    -    f*(t) f(t -  T)    ^    2:E1(t) E1(t -  T)]f j2[E1(t) E2(t -  T)] 

»    ! 2  5F F      (T)  +  j  2 $„ „  (T) 
E1E1 E1E2 

X 

Consider first the quadrature correlation function for the 

undipped case defined by 

; f 

^aaB^aa^^MBMaMMMB 
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r V"V 

V".' 

1 
M/2 
\ 

M 
m=l 

1 
M 

M/2 
\ 
/ 

m-1 

■x(2nT  ) y(2nT  ) + x(2inT   ) y(2mT  )], 
s S 5» Ö 

'x(3nT  ) y(2mT  )  - x(2mT   ) y(2mT  )], s s s s 

and 

zQ(MTs)    =     VMTs)^VQ(MTs: 

Considering Case 1, if we let x(t) = a s(t) and y(t) = s(t 

ZQ{T) will be the auto-correlation function of s(t). Computing 

ZQ{T)    at increments of    i    equal to tne spacing between samples, 

2T ,    gives s 

-   T), 

\^V   -   H 
M/2 

m-1 

;x(2mT  )  - jx(2mT )][y(2BiT ) + jy(2mT  )] 
S 5 S o 

M/2 
s 

M-        ^ 
m=l 

Ls(2mT  ) - js(2mT  )]:s(2mT    -  2nT  ) 
S S S 5 

*  js(2mTs  -  2nTs)] 

c 
1        ^o-s    1      f 
20se M/S      /     f*(2mTs) f(2niTs 

m-1 

2nTs) 

a,,    02u) nT 
^e      0    Szff(3nTs). (2.1.8) 



1*6 

where, by Equations  (£.27) and  (2.28),    zff(2nTs)    is equal to 

i f*(t'   • f(t -  T)dt for    f    > W    and T    --    2nT  .    Taking the i S "^ s 

real and imaginary parts of Equation (2.U8); 

V^V - c}8:'E1F.(2nTs)cOs2u'0
nT8-,E1E9

(2nTs)sin2a'onT8^ 

and (2>9) 

?r(2nT  ) '    'r F  (2nT   ) sin 2;.  nT    + ^ v  (2nT  ) cos 2u nT  ), 
C s s " E. E s os        '"i ^p s 0    8 

(2.50) 

The correlation function envelope is given by: 

^(2nT8) i- Q2(2nT  ) ^   j 2(2nT ) 
Q 8 Q 8 

|zQ(2nT8)| 

v5i (2nT   ) + »_. _ (2nT ). s ElE2        8 
(2.51) 

The maximur. value of   C   (2nT  )    occurs at    n -  0    and is given by: 

Qmax    "     ^Q(0^    -    \' (2-52) 

For the clipped case, the auto-correlation function of   8(t) 

can be found by using the relationship [37] between the cross- 

correlation function of two Gaussian signals before and after clipping: 

$ab(T) \   iiin'1 pab(') (2.53) 

where 



m wmmme^nams t .\ a—s r n—- 

1.7 

r 

♦ .(i)   -   cro«o-corroUtlort function between    a(i)    and   b(t) «fter 

clipping, 

0b(t)   -   nonMllttd cruss-corrclttlon cotfricltnt bttwttn   «(t) 

and   b(t) b«ror« clipping. 

Uatnf Equation (2.^i), th« real and Imaginary parts <>f the cllppad 

signal quadrature corrslatlon functlun whsn   x(t) • o(t)   «nd 

v(l)    -   s(t •  f)   ara: 

/VWVWWSA 

#Q(2nTs)    "    7   8ln ■l[^] 
Z   sin"     !».. - (2nT ) cos 2u nT    - »„. p (2nT.) sin 2u nT  ) 
n E>. b. 8 O     S b. E>9 5 US 

(2.5M 

and 

!,„„., , 1 .„•. | Ä ,.- [iev] 
=   |    sin'1   [o       {2nT ) sin 2u) nT   + ♦,, p (2nT ) cos 2u) nT ], 

IT t,1 £.. S O     S £1. £._ 8 OS 

(2.55) 

Because clipping is a non-linear operation, the correlation 

envelope cannot be computed as the square root of the sum of the 
M     or 

squares of   <t>Q   and    <!>  .    However, the peak of the correlation 

envelope can be found from Equation (2.5U) for    n    -    0, since 
/WVVNA 

^Q(0)    -    0; i.e., 
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(£qUx •Q(0)    •   ftln"l(l)   •    I (2.56) 

Equations (2.56) and (Z.^Z) illuitrat« * baile normalUttlon 

property of clipping} l.t.t the eorrtUtlon function for clipped 

sieneU hea a range of -I to +1, while for the undipped signal, the 

range lo   • 1     to    ♦>> ,    a function of the signal amplitude. 

for Case (2), if   y(t)    -    s(t)   end x(t)    •   onn(t), a Benber 

of a stationary gaussian random process, the average value of the 

quadrature correlation function for the undipped case is tero and 

its variance as given by Equation (2.1»6) is: 

n    .2 

M/2 

V !. 
m»l 

N N (2mT ) •„ F (2mT ) N1Nl        s     ElEl       s 

lb L     d 

(2.57) 

If   n(t)    is assumed to have a rectangular spectrum of width   W Hz, 

Figure 2.7 shows that, for any    f   > W, 

2   -    ^n, 
4 21« (2.58) 

<» 
«► 

where T is the signal duration in seconds. 

The correlation function variance for the clipped signal case 
0 

can be found by computing    oQ      from Equation {Z.hZ) as a function of 

u(t)    and v(t)    and then using Equation (2.53) to express    a     in 

terms of   s(t)    and   n(t). 
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U9 

M/2 
2 2 \ /VAA 

M/2 

/VNA A^A 
♦♦^2(^)^1   ♦vA(2(k.m)Tij)) 

1 * 2 
ny? 

ml 

9m     /vvx ^^ 
(I - r)'*    (2mT )  ♦    (2mT ) 

4   *u(}(2mT
0
)   *V^(2,BT8)J 

M/2 
I  t  2    J»        \       n      2rov 

♦    (2mT ) 

n 
m»l ^ 0n 

•Jlsln      •    (2mT )) 
BB B 

+  :sln     -Ott 
,   * A(2mT ) 
1      nn ■ lisi n'1 %8(2mT8))j (2.59) 

C 

A plot of the variance given by Equation  (2 59) for a random process 

n(t)   with a rectangular spectrum of bandwidth    W Hz and center 
f 

frequency   f     Hz    is shown in Figure 2.9 for   rp        9   and 

M   -   ZTV   -   50       The equations for this example are derived in the 

Appendix.    Figure 2.9 shows that, for the Shannon sampling rate of 
A 
f     =   W,    the variance is given by 

8 ' 

AAAA 
2 1 

UQ      '    2*IV  ' 

but if the sampling rate is increased sufficiently, a variance of 

(2.60) 

approximately 
AAAA 

2 1 
0Q    '   ITR? (2.61) 

.■ 

•, 
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can be achieved.    The small ripples in Figure 2.9 occur when integer 

multiples of the sampling rate are equal to the second harmonic of 

the signal center frequency.    Because of the non-linearity of the 

liroiters, these ripples were not completely eliminated as were those 

of Figure 2.7 for the undipped signal case. 

For comparison with Figure 2.9, the variance for the re^ilar 

clipped correlation function is shown In Figure 2.10 for the same 

example.    The curve of Figure 2.10 shows the same asymptote for 

large    f      as the quadrature correlation curve of Figure 2.9. but it 

exhibits ripples of about   3 dB   Instead of approximately   0.5 dB 

for the latter case. 

A comparison of Figure 2.7 and 2.9 shows that clipping 

permits a reduced correlation variance for random signals if sampling 

is increased sufficiently beyond the Shannon rate.    In summary, the 

two principal effects of clipping are seen to be correlation function 

normalization and reduced correlation variance for high sampling 

rates. 

C 
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r CHAPTER III 

QUADRATURE CORRELATION FUNCTION PROPERTIES FOR 

SINUSOIDAL SIGNALS AND UNIFORM SAMPLING 

3.1   Quadrature Correlation Function for Sinusoidal Signals 

In this chapter, the uniform sampling quadrature correlation 

results of Chapter II for narrowband functions with large TW products 

will be extended to the case of sinusoidal signals. After examining 

the correlation properties of sinusoidal signals, the effects of 

uniform sampling and hard limiting will be derived separately and, 

finally, the combined effects of both sampling and hard limiting will 

be examined. The problem of spurious odd harmonic correlation 

resulting from clipping and sampling will be investigated in detail 

and a solution to the problem by the use of non-uniform sampling will 

be introduced. 

Consider the quadrature correlation function model with finite 

integration time T shown in Figure 3.1 for two infinitely long 

sinusoidal signals with different frequencies. Let the input and 

reference signals be given by 

G and 

x(t)  -  COS CO, t, -oo < t < oo , 

y(t)  -  COS CD t, -oo < t < oo, 



5* 

x(t)*co«wit 

!iilL_^ 

Figure 3 
.1    Quadrature Correlation Function Model for Sinusoidal Signals 
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t 

where ox, 2jtf,    and   m      -   2itf     are thf: simisoldal frequencies, loo 

As discussed In Chapter II, the real and Imaginary parts of the 

complex correlation function   z,(T)    of Figure 3.1 represent the 

"ln-phase" and "quadrature phase" correlation components and 

represents the envelope of the correlation function.    From Figure 3.1, 

Z^T)    IS: 

^(•0 

ZI(T) - h  , 
T/2  Ja^t -Jcuo(t.t) 

e   e 
-T/2 

dt 

1 Jü)OT sin n T(f1-fo) 

« T(f1-fo) 2 e (3.1) 

The correlation envelope peak at x - 0, 

2l(o) 1 
2 

sin n T(f.-f ) v 1    o/ 

it TCf.-f ) v  1    o 
(3.2) 

c 

is plotted in Figure 3.2 as a function of the frequency difference 

(f,-f ). This plot shows that, except for frequencies f-, within 

about   -s   of the fixed, frequency    f ,    the correlation-envelope 

peaks, as a function of input frequency    f, ,    never exceed the 

e 5 n x 
sidelobe peaks of the         function.    Only the first two peaks 

are greater than 10 percent of the main lobe value at    f..    =   f . 

For large    T, therefore,  this correlation function has a very- 

selective frequency characteristic, since it has appreciable amplitude 

only for frequencies    f,     which are within about    ■=   of the reference 

frequency   f . 
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Figure 3.2 Frequency Selectivity of Quadrature Correlation Function 

t k 
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^ 

The correlation function given by Equation (3.1) assumes an 

input signal, cos tu.t, of infinite duration. For a sinusoid signal 

of finite duration T, an additional linear weighting factor is 

present giving 

1  JaV sin * T^-fJ     j. 
Z1(T) ^  2 e       n Tif.-f  ) (1 " T ) 

1 o 

Note thu*" the correlation peak at    T      0    is the same as that given 

by EquatiGi   (3.2) for the infinite duration case,  justifying the use 

cf infinite d-a ration s'nusoids for finding the frequency response 

for small    T    sucii \t    T«T. 

3.2       Uniform Sampling Effects 

Next, consider ttw,  quadrature correlation of sinusoidal  signals 

with uniform samplit:,^.     Figur«  3.i shows a quadrature c   rreiml m 

function model with uniform sampu >'  Intervals    f    21      8t*r 4»d.'.  -M \ s 

with input aud reference sinusoidal a.-rnal« f < B  •, rr-1«- » i vr i , 

The complex quadrature rorrtla'tlon funrt i .-  -..i ■ '  f f lnfirutr 

duration input sinusoids Is: 

C 
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•«UM 

Pl«ur« 3.3    fe*ir«tur* CefTvUtlon Punrtlofi I for 



i^^^^—- i.awvi 

t2(T) 
1 
M 

Jail 

m=l 

Jo) T        M/2 

m-l 

2mT        -ju) Ziti        ju) T s        ü o      s      u o e e 

^2      ^2.^(0^^) 

59 

,M /V    .in H Myf^)      jTg     (| . I) 2n(fl.fo) 

M       sin ic 2T (f.-f )    e 

•     J.    o 

(3.3) 

Hh«r«   -    Is th« nu«b«r of •wiple pairs taken during the finite 

awrafinc tiat of   T    seconds.    The correlation function for    i  - 0, 

t2(0) 
I sin « TCf.-f ) I    o 

^ M sin «2Tg(fl-fo) 
(3.M 

( 

shown In Figure 3.1* approxlnates the    * n envelope characteristic 

of figure 5.2 but with a repetition interval of ?. I 

s 
expected froa saapllng theory   5^1      The sldelobe peaks midway 

between the aalnlobes are equal to about    l/M,    where   M    is the 

total numbmr of saaples      This correlation function also has a very 

selective frequency characteristic as  long as the Input frequency 

f      ioes not differ frta the reference frequency    f     by greater 

than   f$   Herts. 
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Figure 3.^ Frequency Selectivity of Quadrature Correlation 
Function with Uniform Sampling 
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3.3       Generation of Odd Harmonics by Clipping 

Next, consider the effect of hard-limiting on the correlation 

of two sinusoidal functions as shown in Figure 3,5.    The clipped 

sinusoidal signals    x(t)   and   y(t)    are square waves of unit 

amplitude which can be represented by a Fourier series of odd 

harmonics of the fundamental input frequencies    f     and   f.,, 

x(t) sgn(cos cu^t) -    *      I    l&k)   cos  (2n + l) V 
n-0 

and 

y(t) sgn(cos u) t) \   I T^rfy cos (2k+1) V- 
k=0 

If the boxes labeled    "Hf'   of Figure 3.5 are assumed to shift the 

input square wave by 90 degrees of the fundamental frequencies 

ox,    and   cu    ,    then the pre-envelopes   p (t)    and   p *(t-T) become: 

Px(t)    =    x(t) + j^(t)    -   ~ 
, l)n      j(-l)n(2n+l) u^t 

TiSiT    e 

n=0 

and 

.^/ Py*(t-T)    --    y(t-T) - Jy(t.T) 

k   V    (-i)k   ■j(-1)k(2k+:L) %^) 
n      /,     (2kflj    e ■ 

k=0 

(3,5) 

(3.6) 
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COt Wit H »(t)  ^^ 

l—TiHfl—^ 

px(t) 

—|iHil—i -T/2 

»3(T) 

Figure 3.5    Quadrature Correlation Function Model for Clipped 
Sinusoidal Signals 



and the complex correlation function is: 

*3(T) 
T/2 

If     j p-(t) P./^-1) dt 
J
-T/2 

2. y y (.ir^ 
j(-l)k(2kU) w^t 

rSSTTTTSFT) 
n-0     k-0 
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•[-.;:•■"■••]. (3.7) 

where 

a        =     L(-l)n(2n*l) wl  .(-l)
k  (2k*l) wj    represents dl fferencet 

between the odd harsonlcs of    s.    and    w      for given values of    t. 

and    k.    Table 3.1, which shows soae t/pleal valiies that     .        can 

assune, contains all the values of with «aplltude wel^htlr^ 

Note fro« the definition of     .        that the odd r.»m r.ic 

frequencies alternate slgni  i.e., .      is positive,    '-,     is ne#ative, 

V.     1« positive, ttc.    This  is the  result of the fact that   tue    H 

boxes In Fitfure S.5 tiaa shift    1(1)    an«   y(t)    if a tie» e^uivalefit 

to 90 degrees of their fundamental frequencies    «      and    ••. •     n •«.•f. 

this S«M tUM shift  is equivalent  *     '. •   4efree«   (or -W ««er««* 

for the third hamonic coa^onant  of the square «ave.  to .*    decrees 

or »qO degrees) for the ftfui mm *.ie c:f-wuet, etc.     Ttous. 

poeitive Hilbert  transf rve are oetalaed fer the t*r tmmt.xm.,  fift» 

harwDAie.  ninth ham nu. etc   , «aile negative ttllhert tr«*sf 
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TABLE 3.1 

ODD HARMONIC DIFFEREJiCE PltBQUEICIES WITH 

WEIGHTING FACTORS OVD) 10 PERCEIfT 

n k 
Input 

Haraonlc 
R«r. 

Hamonlc S. 

JUpHtui« 
»•Ichtinc 
factor 

1 
fZn« uraai 

0 0 rVKD. ruD. W,      •    to 
1              0 I 000 

c I PUKD. TM1W 
1                0 

1/3 -  0.333 

0 2 mo. ririH 1/9 • o.roo 

0 « . rio. 5i arm 
1                 0 1/7 ..U5 

- i. n«D. umi 
1                 0 1/9 O.IU 

; TKIIÜ n». •^l • - 1/3 ■0.333 

D flfTM P«. ^   --o 1/5 o.too 

SrvUTTH r XD 1/7 C.li3 

5 ■ I»TM r«D. 
*-l - 1/ < Ü . 111 

I TXiW THiW .V,     •   V ^^^^T J.Ul 
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are obtained for the third harmonic, seventh htraonic, etc.    This 

pbtoo—op appears as alternating positive and negative odd haraonic 

frequencies in the spectruas shown in Figure 3.6 of the pre-envelopes 

p (t)    and p *(t) obtained by taking the Fourier transform« of 

Equations  (3.^) and (3.6) and given by: 

n-0 

'/<-' - C/p/^'   • T      \istn v- * ['l)k {u'l) 

k 0 

fmrt rmlr* th« Integration  Indicated la  L<|uatl n  (3.7) five« 

C 
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i 
f\e*rm 3.6    8p»ctr«    f •>• lr«-l-nT»l  p*t    p (l)    %a4    p  • t 
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00 00 

H(T) = % Y  y ,., 
j(.l)k(2k+l) u. T      sinfi^l 

n+k    e 
(2n+l)  I2k+l) 

n=0      k=0 

^      T 

"kne 

input      reference 
harmonic   harmonic 

where      FUND. FUND, 

l    8in(3u^^)j    JU,OT 

T T        * 3   (^«Vl 
THIRD FUND. 

8in(W    * 3Wo) ^      -J^T 

• T    T"    * 
3      (-l^o^ 

FUND. THIRD 

.ln(%.l - -o) |        JV 
♦ r  r-   • 

5  (^ ■ -0) I 

FIFTH FUND. 

r 

FTJND FIFTH 

(3.8) 

«t)«r« th« IndlvtAu«! contributions of »11 eoablnatlon« of Input «nd 

r«f*r*nc« hAraonlci can b« ••«r .    For tM special  CM« of    W.     -    W 

•M     ■     ■    0,    »11 the t«rM  In Equation (S.O) are nagllflbU »leapt 

k   *   a,   flvlng: 
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2      **     nTo (2n+1) 

- = 1 for u.o = u.1, 

Likewise, for w  - -3^ and i    =    0, all terms are negligible 

except when n - (3k+l), giving: 

-1 

"' h 3 <2"+1'2 ~  for  ti)   = -5a), . 
3 0 1 

If we consider just the peaks of z?(0) lor frequencies at which 

ß   = 0, we can express the coatribution due to the principal 

pairs of input and reference odd harmonics ty: 

^ol p«* (2n+l) 
n-0 

P fu, - (.!)• (2n+l) J ] 

V 
/ 

(-l)k 

Hu (-.r (2kn) u.^ (3.9) 

as shown In Figure 3.7.    Equation (3.9) neglec.s differences between 

higher order odd harmonics of    w      and   u. , tte most significant of 

which (for    n - 3, k = 5)   has an amplitude of v oly    fTTwrt     ' TT • 

As shown In Equation (3.9)» the principal terms are of two types: 

(1)   differences between the Input fundamental   w.    and the odd 

harmonics of   u      (the terms Indexed by    n), and [?.)    differences 

between the reference fundamental    u     and odd hrumonlcs of   u.     (the o 1 
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10 
ll»»<»'l 

.1 tb ^irr H 
Figure 3.7    Frequency Selectivity of Correletlan FUnctlcn for 

Clipped Sinusoidal Signals 
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\Tm  ladts»<l t>  i In »U  CM««, tbt crrvUtioe «flitzt  rf ttot 

j^d fc*r»or.lc t«ras  la »^»X to tto» irv«r«« of Uw     r*tr  of '.bt t^raoelCi 

1.«.,  to  1/3 for third Mmhoeics.  1/5 for fifth NMmrr.tc«. «tc 

Tbt ntst   ••ctlDA will  coMlAtr tfer« «fflvct   of uAlfof« MMfll^t 

oe tht ao^tl »hown In flcwr« 5.5.     It H. U  M «IKMA tl»t   for tfc* 

1*4 CM«, ttot   44 fattmailc  t«rM iha** In flfwr« S.7 ftt 

•     (-1)"  (l««l]  -      will be   r«pMt«4 «t aultlplM of tto Mfl»!!»« 

fr»q-*r</     2<f  .     %n4 tfe«   tJb't* 

will  b«   r«fw«t*d »t  aultiplM  of 
y ,*~ •♦■  «>. (•i) 

•     o 
"TTTJ 

• i 

5.4        EffKt of   tilfoim SMtiiM 81 Mrt »l—»olü 

To tu»lM tht «ff«ct of  -JMf r« Mait>Ur4 of ellpyM •liw»oli*. 

conalter tM 4u»4f%turt corrvlAtloe functioa ■o4»l  SIKMMI la fl^rt S.6 

•rw #lrwn by  I^MtlaM   (5.^) 

»nd   (5.6).     TYt«  tw^lvr   output   «Icnftlt  »rw 

T>.« «xpr^ttljftf  for    p (t p »(t.'^ 

P.'Z-T.) 

»i4 

p   •(2«T .■ 
y        • 

rfer 
.rB(2ft-i 'i^.' (S.IO) 

n-0 

4 
t TfPn 

«      .j(-i) (ii«i) w (tar .i) 
• '      .       (S.U) 

h-o 

wtwr«    :T if     la th« 

coapl«H rorrvlfttion functlo« it 

9u>%4r«tur« pAlrt »Hoc  lateral.     TW 
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«u(o 
M/2 

i       ^     Px(2-T8) py*(2»TB - T) 

m=l 

00 00 J(-1) (2k+l) UOT 

"T      / /.     ('1) (2n+l) (ik+1) 
"       n-0     k--0 

16      \ 

ml 

(3.12) 

wh«r« 

kn 
.l)n(2nU) ^ .(-l)k(2kH) wo]    u befor«. 

Puttlrvg the bracketed terle« of Equations  (3.12) in closed 

for« glvet 

JT   (? ♦ i) n. ^  g    2 k* 
«,(0 r-l) (Sn^n  (Sk4) 

n-0      k-0 

' «In y MTg 0^ "|      j(.nk(2k*l) WOT 

.T«^1.    knj 
(3.13) 

wtter«   KT 
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Writing Equation (3.13) in terms of individual odd harmonics 

contributions gives: 

s r sin(u)i - u'o) T/2     jT
s(f

+i^wi-ti,o) ^v 
ZUU)    "    ~2        M/2 sin^U),   - a)  )  T        e e 

Jt        v-    ' v   1 o'      S 

/M 
1    sin(3w:L + Wo) T/2 -jTs(| + l)^ + u>o)    i^i 

3    M/2 sinCS^ + u)o) T     e 

1    8in(u)1 + 3u)o) T/2 jTs(| + l)(u)1 + 3tüo)    -jS^T 

3    M/2 sinC^,   + 3OJ  )  T     e 

X OB 

+ — 
1    8in(5u)1 - u)o) T/2 JT

8(f 
+ ^(5^ 

5   M/2 8in(5u)1 - wo) T8   
e 

u.  )   JU,OT 

e 

,M 
1    8in(u)l - %)o) T/2 jTg(| * 1)^ 

5 M/2 sin^ r^rj TS 
e 

5u) )   j^u) t 
o o e 

] (3.U) 

This equation shows that    a. (T)    contains repetitive tense due  to 

savpling similar to those shown in figure 3.It about each odd haimmlc 

difference frequency satisfying the relation   0. 0. 

Neglecting terms with smplitudes of the order of    1/1^    and 

smaller, an equation snaloguus to Equation (3 9) can be written 

approximating principal peaks of    s^lO) as 



* 
[zhiO)] peak *  1 (i $&' 

■ -x   ^ k-0 

(.l)k(ZJfl) «0 ♦ ■?,] 

(-1) 

n-1 
[Zn'TI      r wo *   (-l>   ^n'i'-1 

(-l)n(2n»l) «,   • af 

•) 

[S 15) 

X 

If th« r«ferenc« frequency    -      ■   2«f      In Equeti.n (3.15)  1* ^id 

fixed while the input  frequency    w 2tf      is varied, the coaplea 

pattern of odd harmonic correlation tems typified by thoee ebo«« la 

Figure 5.9 ^or the fundaaental ( third and fifth hamoolca will  reault. 

Thii figure illuftratei that, becauee of unifor« M^Ilati "efvy odd 

harsonie correlation peaJu are produced tor Input frequenrlea    f 

which differ fro« f      by only • fraction of the •wpllt^ rate    f  . 

TYils could be a highly undesirable situation if • correlatloa functlc« 

with good frequency selectivity It necessary. 

The eaact   location of the input  freqy«fwie«    f      tl«t give 

rise to spurious odd hanso« ic correlation as s funrtloa of 

f     and    f      is  shovn  in figure 3.10      Tfeis figure tt> m* tltat   la any 

of «he fiaeg    f.     frequency Intervals      sf .     '.      .    f        of les^ta 

f , wtwre    h    is  an artltrary  Integer,  tnere are   «e fundamental. 

4 third hansonic, 6 fiftli nankonic . etc., frequemles glvl^ spurlose 

ro'relati AS      for flsed valuee    f    f      aM    r  .    tue i^ratu«    f eecfe 
u S 

of tnese  r««p r.se frequencies ran be 1 <ated trm Plgure 3.10 osve the 
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cxkfjdwidth, the variance of Figure 3.11 approaches the f st sampling 

rate asjraptotic value of 1/fcTV «ore slowly than the coi responding 

large IV case of Figure 2.9. 

- 6       Use of Sonanlfor» SMgltng to Eliminate Odd Haraoiuc 

Kespoases 

In the nest two chapters, we will consider the use o" 

noounlfor« tlae seapllng to reduce the effect of spurious a4 harmonic 

correlations caused by the clipping and sampling of sinusoia .    The 

general sempllf« technique cuns.dered Is tnat of "Block Sempll.V; 

I.e., the use of short sequences  (or blocks) of nonunifom tlm) 

semples «hlcn are repeated at periodic intervals.    The nonunif jrm 

seflpllng destroys the synchronism between the sampling periodic.'ty 

and the ■ignal p*-   •dlclty which cause the odd harmonic responses for 

the uniform taepling case.    Sams general theoretical properties i>f 

block sampling will b« developed in Chapter IV, and the use of bock 

sam^lln« to reduce spurious odd harmonic effects in quadrature 

rorreiatlon functions of clipped sinusoidal signals will be discus Jed 

in Chapter V 



CHAPTKR IV 

SPECTRAL ANALYSIS ,)K N0NUN1FORM BLOCK SAMPLING 

l».l   Introduction 

c 

The une   »f  repeiitive nonuniform sampling  (block sampling 

has been considered for various applications  in the literature. 

Ton [36]  uses    Z-transforms    to analyze sampied-data control  systems 

with "cyclic variable-rate" sampling.     Yen   [hi] and Kohlenberg    2U ] 

derive sampling theorems for the reconstruction of signals which 

have been sampled by various nonuniform sampling schemes, one of 

which is  "recurrent nonuniform sampling."    In this chapter, we will 

examine some of the basic properties of block sampling, concentrating 

on the sampling frequency spectrum properties.    The importance ^t 

studying the sampling function spectrum is evident from the fact that 

the spectrum of a sampled signal is equal to the convolution of tne 

spectrum of the unsampled signal with the sampling function spectrum. 

In Chapter V, the sampling spectrum results from this chapter will   be 

applied to the problem of reducing odd harmonic correlation peakr.  f T 

a correlation function between two sinusoidal signals. 

Before deriving the block sampling time and frequency equations, 

the analogous uniform sampling equations will be obtained for 

comparison.    Consider the infinite train of uniformly spaced ideal 

sample pulses shown in Figure h .1 and given by the sampling function 
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f  •.       can tm lee ef «ei  Into tht cua of    *>    uAlfora siaplln« functlrev« 

••ch of period    T 

r(t p^t) 

n^l 
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Tfe« '. r.-r.if  r« •«■^IIB« spectra    F  f       atilcfc e«B t«   rfe*»iM4 

by t«klB4 tt» l>ourt«r rrvjf re    f    |   ♦       f r« KfuAtlae   (4.5)   is: 

F f s,f*% • (4.7) 

a  «• 

E^uAt l «    i . "    it* —   \t*%   xtm  noa^rAt rm ••■^III^ »p^ctrui  It  • 

»•..•er»««   »i«<'rji   »Itfc   c   «t     «   ' •      f M^lU^te     fc       »t   fc..'.'.».«». 

if  ,       f tit« U <t  ««afiUM r%t«    f      «• «tto«*!  la tlM «MffBl« of 

A c «fatrlft <n   . f tfe«  j.f  r« •wpllf^ »fmcxrM it fifur« 4.2 

t%»:im..f   '••   ■   ' -• ; f   r» »«flfltr^ «p^ctrv« rant«lM    »    tta»« ft« 

»i+i'r*.   r   «»«-•«.   ••(»>    f  -»U»   r««   • raafl««   «apUt^At   .t;cf    ;• 

• ftr:«t.«  fr • c «^ ««fit   t    c afKMMif   ftM  1« ftl«ftya «fuftl  tj or   .««• 

• •♦     .   in  »t *   l^«   «%!«•       T     ...-•♦r«'«   till«.   ca««ti»r  «nlfof« 

• •■«tit^   «It I.   •   <     j'».-'    «vf . ;   4   tF*«f-««l   •.»-•.   •      • ?•   ••« 

•-    .f   •■•    .•»?}.     w      '-»r.».   I«.   I<f.«• :   A     *   4)i   I.«.,   let 

r>« •«■«U'V u«»« {-); 
r   t* • 



-" 

i 

-I 
I? 

! > 

d 



w 

> 

tl»t momumXtoi 99 J»I%.-^ eo«fflcl«et     •.     r»4^r«s to: 

V       1 I * \ I 0 ftoc »11   ^ifctr i. 
[k.B) 

TW AoabAlfom '.imm u* tv^^ueg imX\ **   :4.« ««i 4.7) 

Xz  tlM   .'-.f m  »Mf.: ^ m+imMjm*    4.|  %n4 4.S).     l^uAtls«   (4.S 

tlMt  tlM tt^MAlfora Mflvill^ «f^ctrva  (rt#i*r« 4.)) iM    >    tia»« M 

■»cgr tj^c'r».   UbM M 'tm   j .t m  tm*.'.** •»•rtr«    fl#ur« 4.1). 

IfuAtlo«    4.") «bo«« tJMt  'tm «•«•li*« ati^rt^r« of \*m 

n ckkblf ra Mayil^i sfwctrN«    F f      U coaflvttljr «Mcrtfe*« toy 11M 

•$••• r «mcl»r.*.« *. . -t;cf «III 4« «Mr toflc f «t^ty for tlM 

r«BftlnA»r f tKU cta^«r. TV : • • «n'•'•'• ••* ' S ** f^*** 4/ 

IfwAttcMl   (4.61   ftr«   ^«f*!: I)     M   •   M nl t« Mf   —KU1   MrlM. 

•M   (I       M   ♦'•  «rvr^«     f    %     *ftlt   .»c»    r»   1» 14« r »f;••  ylMM. 

rv*»»  int«rfr»t«tl *» «til  •« ^.|f.     IK \*m MM1/«U yro*!«» of 

••••i-";-;'^   ♦••   *ftH|.-.'4  spectral ^r-^fart !••  for  • ftvw  •««   sf 

U '»i»  M«tlaa,  •• vt«4 t« cj«*l«*r tM r 

l«r; j4lrUy    f tM noM^lfr« MM»!!^  «f^rtrji «-. 

i« .   • .    .  '     v.«    4 . »1, 

4f 

f^r 



*♦ 

r Mf) \ 

I 

•(f-k f 

I s    t   _  • 

^.7' 

4.6 

•♦•r«  T      •     I/f      U ttaa tl.Ki Mapll^ t*r\j4.     floAlr^ tte 

cotttltljea for ♦»» p«rt341clt/ of    *.     !• •^-lr»;»rt   to flail^ tht 

«MilMt  lat««»r    I.     »MC») tfaftt: 

S       S.t >.41 

fur  ftU    ft      fr» M.«t:  r  (4.6),    «.   g    la g !»•«  ^jr 

...   i 

i 

t t 

4 :: 

• ^r»   •»*♦ 

f 
:r*» 

l.    fw# »u    •> i. t,   .   ., ■. 4   U 



K 

r.  •q*ir*.mt.'..t, Mnil 14 tt« M»ilwt    E    »Jtt tfaat 

t M 
^    .    fS    ,    for All    a    .    I, t,   ... I, (4.12) 

• «fflclMCjr  U    *ri ■*•  tram Efittlo«  (4.10).    Tte a«c««*lt/ •mist« 

t*<»««• M.»t; <■   (4.10) auat to »fiMl to   v    for all valuM of   k. 

lr. «Mm:* to tto toalc p»rl34leUjr    a.     •    «v,-.    • e.«fi«« 

c .*;.*-<•<•  •HBfcrtrir aiout    ft  -  0    follow« 4lr«cU|  frj» tlw «tftalUoe 

f    a.     ilrae la E^uatl*)  (4.6)^   1.«.. 

.JJ« 

a-1 

rv   . 

• • for all    ft. (4.13) 

• ;n4 l^^at 1 n«  (4.9) «at  (4.15),  tlw ( ■} :•« c njMcat* «jWKatry can 

t« ««oarall«*« t 

l.ft •'«.*      ^ *U     *   • (4.14) 

•♦•r«    H    «fki    k    ar« artiltrary  Int 



«1 

A er. i:»o  to I^uatloe (4.U)  is: 

r •t I    Sl-M for all    fc. 

wfcl'h follow« dlrvctl/ fro« c«r-«» conju^fttc propartiM.     The 

•/«Mtry profwrtlM  af E^uatlacu   [k.lk)  tat (4.9) »r« illu«tr»t.«4 

In Pl^ur« 4.5. 

Ac «aaMliMtion of th« periodicity condition of Equation (4.12) 

will illu«tr%t« th« r«l«tion«hip« t>«tw««n th« rvonunifor« stapling 

tlaec     v t     S    ,       «nd th« ••■pling cp«ctnjB c «fficients,    a. . 

Equation  (4.12) shows that all ratios    j^    (n • 1, 2,  ... t N) 
P 

■ust b« rational  nu«b«rs if   a     is to t« a periodic function.    This 

property ran b« suaaarisad by th« following ih«or«a: 

t 
H        -J2«k^ 

SfPffi»    Th« furctlon    •».    -   | • P      is p«rlodic if, 

n^l 
t 

and    nly if,    «r    Is t rational nuaber for «11 
P 

n    -     1,2,   ..., K, 

t 
PEQuF:        To show sufflci«ncy, l«t   r   b« rational nuabars for all 

P 
n    and    r«pr«s«nt these rational nuobers as the ratio of 

h \       h        a2 two lnt«ger«, I.«., l«t »- = ^- , «r   r- , ... , 
P     I    p    D2 

tN    •« Y" TT      wh«r« «. and b.  ar« Integers for 
p     N 

i - 1,2, ... (N. VJ« n««l only exhibit one value of K' 

[not necessarily the minimum K defined by Equation (U.10)] 

which will satisfy Equation (4.12) for all n to prove 
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periodicity.    One such    K*    is    K1    =   b.   • b«  ».. b« 

N 
-   II     b..    To show necessity, consider Equation (U.ll). 

i=l 
t 

If   =-   is an irrational number for any   n,    then 

t 

e could not be unity for that    n    and periodicity 

of   a.    would not be possible. 

In practice, where sampling times cannot be determined with infinite 

accuracy, approximate periodicity rather than precise periodicity 

must be considered.    This topic, which could be an area of further 

study, is not considered in this thesis. 

Assume that a set of sampling times,       v*   j > is 

specified and that we wish to determine its spectral period K. Let 

K' be the smallest common demoninator simultaneously satisfying the 

N    equations: 

"l v 

M2 
K' 

\ (U.15) 

■Ml 



93 

r 

c 

for some set of integers M. , i-l, 2, ,..,N, Then, the spectral 

period K is equal to K', This is equivalent to saying that K is 

the smallest number of equally spaced time instants into which each 

block sampling interval T  can be divided such that each of the N 

r  AN 
nonuniform sample points ( t  > , occurs at one of these K 

uniformly spaced time instants. This is illustrated in Figure h.6. 

If, instead of the sample times ^t j    being specified, a 

desired periodicity K is given, the acceptable sets of sampling 

times giving this periodicity can be found by dividing the block 

sampling interval T  into K equally spaced time instants T /K 

seconds apart as shown in Figure U.6. From this set of K possible 

sampling times, any selected set of N sampling times would yield 

a sampling spectrum of period equal to K/m, where m is some 

positive integer. We are interested here only in those sets of 

sampling times for which m - 1. These will be the sets satisfying 

Equation (^.15); i.e., those sets for which K is equal to the 

smallest common denominator K' of the N equations given by 

Equation {k.l^).    Of course, the actual values of the spectral 

coefficients a,  depend on the specific set of N sampling times 
K 

chosen. Since the number of possible unique sets of N sample timer; 

from K possible sampling times (the number of combinations of K 

things taken N at a time is 
K! 

N:(K-N): )      becomes very lar^e for 

large    K   and    N    with    K » N,    additional criteria beyond 

periodicity may be necessary to be able to select an optimum set of 

N    sampling instants. 
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Figure k.6    Division of Block Interval T  into K 
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Ar   imp rt*r.t   «Kaafl*     f »jcfc   %  cr\*»r: • r %•     f   t|«v-».r%; 

• r*j:r^.   I.«.,     f e.etr.^lUBd   th»   ••fil'^Ar     f ir   r*r*«<.r   f-»;  ♦ . , 

f: 

i .4 Sfctrv C ft<tnr»tl g Fr t^^M»» 

A e «f^r; *   r     f itm   .' -.t r«  «WNII lr^  :,*<• rm    t f\g-*r* • . 

with tht r. r.j-.if  m «M^UIV  •(«<'• r.«    f  fl^ur« ^ .*   »f   ••,   in <*«»«rml, 

cl  ••!/  •pACwd  fr*qJ«r<.t«.      In  'f'.t   »»■■••. «,   -•  «111   «nftlx««  Ihta 

dlttrlbutlon    f «pvctr«!  y wmr  »M  •;..   atv « thftt  ' f«  ».tra^r  i   »«f 

In »njr »w^lli^  «p^clruai 4*p*M«    >nl>  j^^n th« »rvr««« *wrt ••'•#'   r%i« 

%nd not upon \tm pr«rli«  naylln^  *ct.*m*.     rv n   ;»  rvj.;.*.r''   «     ••grt'V 

th»t   ftll   •U^ll:^   »cK««*«   «iltn  «fr   »MM   «««rv*   «M^Iin^   r%,-9  mar*., 

r«dlitrlbut« a  flH*4 Mfej-unl     f pm*»if   in  • f«  rr«^u«ncjf   < —in.     In 

addition,   • tlallftr property  will   tm  it.   mt:  for tht c ej :«»  «r; :.* .Ir 

Conaldar »ny n nunlf r« block •■vplln« function alallkr t     trat 

of Figure 1.2 with    '.<    aaaplva p«r block  Intarv»!    T  ,    «nd wilt • 

periodicity    K.     Tht ap«ctrua   T «ach auch a%a|>lln« function la 

cocpletely daacrltwd by a knowled«« of th« c «^la« apeetrml  e «fflclerits 

H 
1 

n l 

.jZKkyi 
P 



•♦.   tlw  f'»j^--c;«i     f       ^^   .     T>*  pcwcr   «j» <.*♦♦!  .Itt; —ct.     v :» 

(l««r  t/ 

« I 

bl     »1 

■ « 
I i 

5-1    • I   ^ i-"i 

c^    iÄ     t ■v] 

(4.16) 

>.« * 4w«M   r.  u   »r*rft«ta   in t^^ti r    • . U     e%n b« «bo«« to t« ••ro 

t/  «**.-*    .••     f   th»   |wrl  41cl'/   c nAttl   r.   af  tfv*«t i   r.   (4.11).     Fl 

•Ml   r«r.  4UPi   r   f4'.,.   *..   M    l«   •»er.  t »*♦ 

r 

f r  «..     r.    ».  i    m,    -t«r«    v      .   »•    int«f«r     ' M^        .Tier,  la 

4»p«n4*n^    *p r.  tha   ¥«1 ^ae    f    n    •■ J    ■       :> •   » «a»':  r.  in br«Ck«t« 

k  1 

L'»k 
T f; B 

r 
C   8      -mf     k 

ä  1 

'r.   if      n ■   5 

\ p 
^0     -thvrwia*. 

0 or I 



T>«  c*»« 1 ♦•   n t   »rl««  t«Cft«««   * r«   i >■     «er     r. 

r •Ai    B  IR     I-;-*• . ft    4.16    A «•  a %   larl^i« tt«    F.      ■     '.«r**   ». : 

•f*  c»«# ■    ■ 1   .:»•■•;»»   c%.-.    •   «slat   tine«.   If     *. , 

 ft        > ,     wt » vl« a *   #•♦.      k    «•■fl»«  p«r  tl <■«       t ;,••     r    *   It 

1 
•   1 

4.; • 

,     ( 

«■*  pvrtsAlett/  ;'••?»•;     v.l.   lltus,   •.»      wr  »,• ..   .■••»(■•.   i»..';j.r 

f tlM  t«»U-   i«ri   i     1«  •   f j*'.   '     Al/    f  •?•   rthMtwr     f   »•--».r;   }«• 

tic*     S,     »n«  I«   . .U\*r-U"      t Xhm  ei»C*   «»»f       „      •*•*»     t   . n 

%ni  of tlM  part 41rltjr  lnt«nr%l     i.     TV.l«   it  r j,..•.•- •   *     »«/In^ 

that   «11   noAonlf ni tl «A  »•*% .■.■4   »cf«w*  .:••     !k    ««ffpl««   ;«r  tl c« 

tev«  %ht »•*• »<vr««*  »{*<'. r%l   p ««r,   %nA    nl/ '. r« ln'rll.t;   n    f 

that   n<*4 p ••r ««  » f-iftctlj«     f fr»4u«nc/ 4«p*nd*   ap r.  • r*  «EftcT 

r      \  s 
•••     f »ftflBllrur  Inttftntf      ( t     I Ttila  pnpartjr   ;r   .;4»t   •'♦ 

l*«l«   f  r  ap«ctr«l     «Kftplri^"     f «r«   a«*;.:r^  ap*ctr^t   t/   UM   ch tc« 

of Mapl«  • .BMI   ■  \  N'     •»  will t»   li&c..a»ri  in th«  rMMlnln«  s*etl f j 

sf thlt cKAptcr. 

Al', r.   ^r   tg*»* i   r.     1.17 < «r   •»   thftt  th«  ftwrft^t«   vftla«     f 

It  • cjnstftnt   ln4*p«rwS«nt     f rh« apectric  Sftncllr^  InxtftMa   «   t    ^  , 
2 ^   '   / 

th« vftrlftnce   jf      ft^ ,    which  la   3*M ntftsur*    f th«  unlforalty  af 

ft.   j fts  ft function   jf frequency,   la alron^ly (l«p«nd«nt   up )n the 



4? 

)UB4 ximmt      U Sartioc 4.6,  U  will f tho** t&*t  \tm 
I   Z 

1«  • 

IT 
i -ii. 

la 

A «pact r%a ^ rj»r»»ti  r   prx^trt/  tlall»r tc  tatt  af 
I 

l^^fttl^i    4.16    fbr     «k CftB «1*0 t« proim r. r tlw 

«it|.;r^*  apw-tru«    »        ">• «rvr^j*  «%lu«   af    «.      jrmr  : 

perl 41elt/  lBt«rY%l    I    1« «iwe t/: 

on 
: 
T 

l 
T (i.is: 

* . » i R   l 

A««lr.,   .«'.'^  'f  p«rl 41clt/  r«I»'i   r. af E^uatloe    k.lt 

1 
I 

a   I 
h 

* I 

r.   :     a   i 

•Jt« 

1 
T 

.i i 

:■»< 

1. LTJ 
T3I  

i . • 

(4.19) 

:>>•  ••r»  In tr%cket«  In Eqaatln   'i.l<J)   la eq^al   to i«ro  1 f    w>    ^     I 

wd unity  If   Y" I-    *ul»  «Inc«    »•<  I, Ihc coodltljn 



^ i     «-%r    t.lt    <c-r  •*•■«  tlw   l«at   I *< 

• t    tint   »r.J   i    .•'       '. .     .      'u*4.   l^^fttl   a 

••l«ctt «    f tht » !••     r;<.'.    f *tM kl «ft •Mflln^  ■..•••m»;  M «ill 

t«  lUu«tr«t«4 67 ttat ta«»|-••   I« ••«tic« ft.^. 

k.S i;j<ft Ig^Jjl »g»ctrv t>M»Uft 

f: 

In 'tit  —CM   r .  • «■ ftpsctric •»«*(.••  »r« <.»••    *     ...-»•?•'• 

•p*ctrvs. r.»i4«r   flrtt   • t««lc   --if  rw  Mff^Un^  f-tncM « M  »h «n 

in fifurm 4.T(») »•  • *|*c-.«.   .%«•    f •   ^.•:f  ra •«*(..>      A •   *».     f 

I 10 (Wt(.«t  »rf   &•• ^*)  in •met t\ «ft  ••»fl:^   lnt«nr«l    t 

f 
t^^rx   r$    i.'>  »r.i    i  "     «f   .    »«t   .-if r«   -•;,i  «»t.'')« •(«c«r«l 

• [It**     «.     •■l«*   f   r    ft       ■uUlplai    f    l.       i.«.,   ••   tri*»T*l9» 

mf-.ir»   ftr« p-vj. f    <•—    «c   lKaatr«t«4  In  • F«  ap^ctr»!  pi t     f 

'«r»' ,  c   ' tiltr   tf»»*!'^   'f •  tl <ft   .•'•rt%.      T -;    \n\       I 

pocaltl«   iWii'.-^  • :•••   mi't.  «   .r.lf r» tpmeit*     t     :.T»     T       ««r ndi 

f r « which    '<       I-     n nun If rv  «ftt^lln^r   tnatftnts  «HI   t«  ch ••n f r 

th*  f >ur  tXM^l*a   ah Mn   In  » !»• .re ^.'b1»^.7«.      Ir.   • r •   1 r»>:   «a 



w 

IX 

44444%. "H...41 ...[:■ 
ICI Tt^fllM^IIlTMIlh    I   ■■■■ ^^ 

«•i 

^.r, ..•    hi <■» swfr.r^ >*»^l«» 



lOl 

c: 

rtiofc, it  «MI JV ••   ••••   r««»rj.*ii    ( .-..-•   i      • •'♦ .-: p««ltl« 

;.;•< iBjttet«  *r« a«i«ct«4,    «.     «Hi  fcav«  * p«rl 41eit/    f 

I      80,    tltfejt^fc • «&.r*.«r  i«r. 4 1» |».-.'«lbi«   1c *.a« c*i»*     f r 

»I«,   IB  \tm   -•   t   rm  »«afilr^ CM«    f  »;#-.'• 4.f • >..»,   1c 

U,   *?«   rvft^j.lf   m   M^llntf   tf+c'r*   «Ufffi«!     f  ».^-r^t   -   "  t)     • 

k.Tt«1  •". ..   tew   ;:   • :mmt   ««  «*.>   n«i.g«r    «fv^tr«!  caficwnta   ».^   ♦ r.* 

t«  •  r%nA •   .  ' -   .f  rm  ,«'••!■-,  LAafffl««     t     •     4      f  f./-,r# • 

c.Mltt     f cfaftf^lr«.   r«»|«c t irvljf,    *M,   tw ,   •..•i  «r.r»«  :*»|..*i   p«r 

• lo<*  fr •   «nlf  r«  ««■(...« 

In bafffl«    t   .    <Ujr   'f«  I «»tl «    f  ttw  firat   »^1«   in ••«. r 

r»f«'.,;r«   t. <•   lnt«nrftl   la  c»i*r^«|.     A*   ah «r;   In  \t*  tr+q^mney  plot 

f  t.f.f «       t    .   a«AU   •|>«ctr%:   i •(■*••;   •(^«•r   %•   ».     .»..•;     f 

fe.     k» ••t*r'#J.   •'♦   ap«r*r«l c «v r*-•   •'     •       10    it ati..   rvlftttwly 

l%rc«  alrac«  ttw  aa^fUiv  ' l«t fwortian iiffar«   onljr  ».:&'.f   tram 

*.ir rm twflir« 

Ltaflflva     c>   «n«    d   ,   «»Itfc •»    tn4  thr««  aasfl« polnta  41a(lM»4 

fr«   -'.f  f»   *tt^(.:'«.   •»• .t.'   rr«^j«ncjf   «(»«ctr«   in  «r:.r   ' f .•   .»r>» 

-- : f   r-w      «[   ■ •- ■   «•.      a        1        r«i    1  ^    1   :ft|t«»r^   tr.t <  'f r  t*ctmrr   .'.J 

Lawtf l«    •    c «itl«*«    I   • r*  1 •  ••!•( * 1   n    f  .     ii«! . live  I' in'« 

fr«  'v«  f    p •altl*   »mmfiiKg  lna*ftnta.      :>»   *(*c*r«.   (1   '   (   r  »Ms 

rtwrf .•   it   ^jrplc«!     f  ,rl••.   tfmr%lly   ;r   j^»i  bjr  ■   t.r.f rm   ?•  4» 

a«*f>Un4  In  th»t ,  Ai^host^ti  •'♦  a*af.ln^  i   ««r   la   J.-'r.t .'»vj  fklrljr 

mtf ml/   In trmq^t^f ,  •  r%*lMr «14«  w^lPu^«  s(r«*a b«*w««ri 
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ttot IftrgMt «nd MKllcst cpoctrtl coapontrls is noticeable.    As will 

bm s*sfi Utsr, tte pr«s«nc« af txc*sslv«ly Isrf« spectral coaponents 

■ajr b* undMirablt in »omm «ppliestions sod % »or« unifom distribution 

of po«««r versus frequency required. 

The caaplcx conjv^nte syaeetry ebout the aidpoint   k - 10   given 

by Equation (i.U) Is evident  in ell the exaaples of Figure k.J.    The 

.»•d v»lues   jf I 
1c 

K 

k'l 

and 1 
* y 

k-l 

X 

as shown on figure 4.7 for each exeaple, can be cowparad with the 

theoretical values fro« Equation (U.17) ana (It.20) °t   \       - $ = 0.1 

for all euaples and   a" o    for Exaaple (d) and   aT   =   «   «   0,1 

for the 1    for these exeaples.    All fining eaaaples since   «- 
P 

CTaputed values are seen to be within ♦ O.ji     of the theoretical 

values.-well within coaputational accuracy. 

Another laportant special case of nonunifor« saapling (see 

figure k.b) is that of aoving every second seaple of a unifom 

seapling function by a constant saount.    For exaaple, this could 

describe the quadrature saapling process in Chapter II and III of 

taking quadrature pairs of saaples at a unifora rate.    This exaaple 

can be sssuaed to be the sua of two unifora saapling functions with a 

fixed tine    urlgin offset.    Accordingly, the frequency spectrum for this 

saapling fur>ctl,->n Is equal to the vector sua of the contributions froa 

each unifora ssapling function.    For the exsople of Figure U.6, the 

unifora spacing  between corresponding ssaples is 0.2    T     which, in 
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I BLOCK INTERVAL'Tp 

(20 POSSIBLE SAMPLING INSTANTS) 
(10 SAMPLES PER BLOCK) 

.5     4     .5 8     .9     10 

(0) SAMPLING TIME FUNCTION 

5 \5 15 

(b) SAMPLING SPECTRUM 

Figure 1*.8    Uniform Pairs Sampling Example 
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general,  results in a non-zero component for    k    -    multiples    of    5« 

llie zero spectral component at    k     -    10    occurs because the vector 

contributions of the two uniform sampling function cancel each other. 

The periodicity of    K    ^    20    follows from Equation (U .15) since there 

are 20 possible sampling instants per block and    N = 10.    Performing 

the following sums over one spectral period: 

and 

20 
1 
K 

k 1 

20 
-     1   v 

k-1 

0.1 

likewise is consistent with Equations (^.1?) and (1+.20). 

The concept of the complex frequency spectrum    a, ,    as a 

vector sum of complex spectral contributions from two uniform sampling 

functions in the example of Figure U.8 can be extended in the general 

case of Figures h .'6 and k .h to the sum of contributions from    N 

uniform sampling functions.    This is equivalent to considering    a. 

as a resultant vector equal to the average of    N   unit vectors wi*.h 

varying phases.    The maximur.  value of   a.     -    1    occurs when all    N 

vectors have the same   (zero) phase.     If the    N    vector contributions 

are uniformly distributed in phase over    2it    radians,  the resultant 

a.     is zero [e.g.,  see spectrum of Figure U.7(a) for 1 < k < 9'j, 

«*■ 



105 

r 

k.6       Minimizdng the Spectrum Variance by Choice of Sample Times 

In Section k.k,  it was noted that although the average power 

\ 
of the sampling spectrum components is a constant which 

depends only upon the number   N    of samples per block, the variance 
2 

is strongly a function of the specific sampling times of \ 

ft \    In this section, it will be shown that the variance of 

can be minimized by proper choice of (t j  and the conditions on 

ft J   for minimum variance will be derived. 

The power associated with each a,  is given by 

N 

7 y i n=l   m=l 

-j2itk- 
(t -t ) v  n   m' 

-     1 4- 1 

N     "5 N 

Since the mean value of 

N        N 

n=l   ra=l 
n/m 

2 

2itk    /,     ,   v cos •=—    (t -t  ) T        v  n    m' (^•21) 

1     . 
was found to be equal to   -r.   in 

Equation (4.17), the variance    av     of 

can be defined as: 

\ 

N 

over one period of   k 

JK 
1 
K 

k=l 
\ 

2 1   2 

Substituting the expression for    ( a, 

into Equation {k .22) gives    av     as: 

(4.22) 

TJ)    from Equation (4.21) 



io6 

JK 

K N        N        N        N 

\ T h y I y y-F(vv-r(vv 
n=l   m=l    i=l    j=l p ^ k=l 

N 

(U.23) 

If the terms for which    (t^^)    =    ^i"*^    are isolated and the 

summation over    k    is interchanged with the other four summations, 

Equation (^.23) becomes: 

N        N   ^ 
2 

7 / 
i 
K 

K 
\ 
L 
k=l 

2 2nk    /.     .   \ cos   Y-    (t^^) 

n=l    ra=l 
n/m 

N        N 
2     \'      \ 
-J L    L 

n-l    m-l    i=l    j=l 
n/m 
Mo 

(i,j)i/(n,m) 
(i,o)/(m,n) 

N 

r K 
1       \ 2«k 
K      )     cos F" 

k---l 

(Vtm)cosf£    (t^) (U.2U) 

The conditions for minimizing    o„     by choice of   (t^  can be found 

by examining the two bracketed sums of Equation (U.2U).    Let 

X 

1 
K 

K 

cos 
2 2rtk 

k=l 

(t -t  ) v n   m' 
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r 
K 

ic     /      cosT-   (V^) cos—   (V^)' 
kTi P P 

Us ing trigonometric identities, S,  and S  can be written as: 

i + i- 
2    2K 

k=l 

COS 7=   (t -t ) T   v n nr 
P 

(^.25) 

and 

IN. 

2K  / 
k=l 

cos |^ (t -t + t.-t.) 
T   v n m   i j 
P 

2K L 
k=l 

cos ~ (t -t - t.+t.), 
T   v n m   in 
P 

(14.26) 

An examination of Equations (^.25) and {k.26)  shows that because of 

the periodicity of Equation (U.12), the three summations over k are 

always either zero or positive depending upon the choices of t , t 

2 
t., and t.. Therefore, minimizing av     is equivalent to minimizing 
1      j K. 

S, and S  separately over all sampling instants. 

First, consider S.. as given by Equation (U.25). Using the 

periodicity condition of Equation (U.12) in an analogous manner to that 

done in Section k.k,  it can be shown that 

■ü 
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1 
K 

_K 

{__ 

k=l 

cos -—    (t -t   ) T n    m 
P ( 

1 whenever (t -t  ) n    nr 

0 otherwise. 

T 

ii2 

("•.27) 

Equation (J4.27)  shows that to minimize    cv  ,  the sampling times should 

be selected to minimize the number of occurrences of the condition 

w - f ' (ll.28) 

where t  and t  are any two sampling times with t > t . n      m      ^      r      0 n   m 

Next, consider the sum S^, given by Equation (1+.26). Again, 

using the periodicity relationship of Equation (^.12), the two S? 

equations analogous to Equation (^.27) are 

rl whenever (t -t +t.-t.) = -T , 
n m 1 j     p 

1 
K 

cos ^ it -t +t..t.) =< 
T   v n m   i ,1 

0, or T , 
P 

k=l 
0 otherwise, 

(^29) 

and 

K 
1   v K  ^  cos ^ 

k-1     : 

'l  whenever (t -t -t.-t.) ■= -T , 
n m 1 j'    p' 

2nk  (t -t +t..t.) =< 
n m   1 j 

0, or T , 
P 

0 otherwise. 
v. 

(U.30) 

To minimize aK , the sampling times should be selected to minimize 

the number of occurrences of the conditions given by Equations (4.29) 

and (4,30).  These two conditions on t , t , t., and t. can be 
n' m'  1'    j 
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combined into an alternate equivalent criterion that covers all cases 

and is easier to compute in general.    Consider any four sampling 

instants    t. , t?, t,,  t, , at most,  two of which can be equal,  order 

them such that 

H < t2 < t3 < t^ (li.3l) 

and form the six linear combinations 

and 

^   =    i\  ' t3)± (t2 - V, 

L2    -     (\  -  t2) 1  (tj   -  V 

■^  =   i\ - V i ^ - ^ (4.32) 

Then, from Equation (4.26), S  is increased by l/2 whenever 

L.. , L , or L- equals T  or zero. 
J.        G o p 

For the case above where two of the four sampling instants in 

Equation  (U.31) are equal, Equations   (4,31) and (4.32) reduce to; 

\<S< s (4.33) 

and 

and 

\   -    (t3 - t2) 1 (t2 - t^, 

S   =    (ts - t2) +  (t3  - tL) 

L3    -    (t3 - t^ +  (t2 - V (4.34) 
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To sumnarize, in order to minimize o„ , it is necessary to 
IV 

minimize the number of occurrences of the following three conditions; 

(1) (t - t ) n   m 
■r* , for t > t , 
2 '     n   m* (^.35) 

and 

(2) L, L2' 0r L3 

(3) L1, L2> or L3 = 0, 

(J4.36) 

(^37) 

where L. , L„, L_ are given by Equations (^.32) or (I1.3I4). 

Consider a given sampling function {t.J. ,  consisting of N 

distinct sampling instants. In order to determine the total number of 

occurrences of the conditions of Equations (^.35) - (^.37) for all 

combinations of sampling instants, the following procedure can be used: 

(1) Form all possible pairs of two distinct sample points 

t  and t  such that t > t  and, for each pair, n      m n   m 

compute the difference (t - t ). Count the total 
^ v n   nr 

number of occurrences 
^ 

of the condition of 

Equation (^.35); i.e., the number of times that (t - t ) 
n        m 

-   T /2. 

(2)    Form all possible sets of three distinct sample points 

t1 ,  t_, and t_,   and order each set according to 

Equation (14.33),    For each set, compute the six numbers 

represented by    L, , L ,  and L_ of Equation (1J.3U).    Count 

the total number of occurrences    M_    of either 

Equation {h .56) or Equation (I1.37); i.e., the number of 

times that    L.. ,  L0,  or L,    equals    0    or    T  . 
12 3^ p 
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(3) Form all possible sets of four distinct sample points t. , 

t_, t_, tj  and order each set according to Equation (li.Jl). 

For each set, compute the six numbers represented by 

L., L?, and L  of Equation (14.32). Count the total 

number of occurrences M.  of either Equation ('t.36) 

or Equation (I4.37). 

If no occurrences of the conditions of Equations CO^) - (''.37) 

are found for all possible combinations of sampling times; i.e., if 

1 
M^    =    Mj    -    M^    =    0, then    S1    =   ■£ ,    Sg 0    and the minimum 

value of the variance    aK      Is attained.    From Equation {k.Zb), this 

value Is: 

(aK Wn ; 
N —. 

(i) 
n=l    m=l 

n/m 

-    (1 - -) 
N2     [        U) 

{k.5Q) 

Equation (14.38) Is useful as a standard against which the variance of 

any non-optimum (I.e., non-minimum variance) sampling scheme can be 

compared. 

A simplified expression for   aK     from Equation('i .ZM for any 

non-optimum sampling scheme can be written in terms of M-, M.,, and 

Mj .    An examination of Equation {h.Zh) shows that each    M?   violation 

results In two non-zero    S,     terms and each   M,    or    M,     violation 

2 
results in four non-zero    S?    terms.    Thus,    aK      for the general 

case In terms of    M , NL, and M.   is: 
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i. (l.|)^ (Mg)^ (Mj.M,) 

^K'U 
+7 (M2-2M3.2M,). (»».39) 

4> 

llie examples of Figure U.9 illustrate the variance minimitation 

concepts discussed in this section. Example (l) shows one of many 

possible sample time choices (for N = U samples per block and 20 

possible samling times per block) which yield a minimum variance 

spectrum. Since N = 4 for these examples, the minimum variance 

from Equation (U.38) is (o ) . ij   (l-i)   =   o.c*69. 

Examples (2) - (M show some typical non-minimum variance cases.    The 

table at the bottom of Figure U.9 gives the valu s of   Mg, M_, and M. 

for each example and compares the computed variance with the theoretical 

variance from Equation (U.39).    In all cases, the computed variance 

was accurate to within computational accuracy.    Note that the minimum 

variance spectrum of Example (l), while not perfectly uniform over   k, 

has fewer extremely large or extremely small values compared with the 

other examples.    The uniform sampling case, Example  (5),  illustrates 

the upper extreme of maximum variance because all of the spectral 

power is concentrated at the minimum number of frequencies.    The value 

of    aK      for the uniform sampling case is given by    aK      = l/N (1 - l/N). 
2 

Therefore, the range of a„  is given by: 

■M 
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(N«4 SAMPLES PCR BLOCK i 0 

J»Ül    (20 POSSIBLE SAMPLE       i '    ' 
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2 
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04685 
.0705 
.0867 
.0860 
.1875 

.0469        ( 

.0703 
.0859 
.0859 
.1873        ( 

(MIN. VARIANCE) 

(MAX. VARIANCE) 

Figure U.9    Examples of Variance Minimization Principles 
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^    (!  -   N)< -K      ^N   (1 -if)' 
N 
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The minimum "ariance sampling points shown in Example (1) of 

Figure ^.9 were relatively easy to find by trial and error because of 

the relatively small number of possible sets  (eleven) of 2, 3, and U 

samples which had to be checked against the conditions of Equations 

(1».35)  -   (li.37).    However, as the number of samples per block    N 

becomes large, this method rapidly becomes unmanageable except perhaps 

with a digital computer.     If minimum variance solutions do exist for 

large    N,    it seems probable that a computer algorithm could be devised 

that would find them.    Investigation of this topic is left as a possible 

area for further research. 

Even if minimum variance solutions cannot readily be found or 

are not practical for a given application, the minimum variance 

concept is important because the minimum   oK     given by Equation (U.38) 
2 

and the    oK     for the uniform sampling case give two extremes against 

which any practical sampling scheme can be compared.    This will be done 

in the next section for a unique nonuniform sampling technique which 

uses a pseudo-random number generator to select the sampling times   (t^). 

k.f       Sampling Time Selection Using Pseudo-Random Number Generators 

This section describes a nonuniform sampling scheme which uses 

a pseudo-random number generator  [19] to select the nonuniform sampling 

times ih) i-1 
Although the scheme does not generate a minimum 
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variance spampling spectrum,  it achieves an important unique spectrum 

shaping by suppressing the amplitude of the    a.     spectral components 

for small values of   k,    it is easily reproducible, and it can be 

readily modified to obtain any desired number of samples per block, 

N.    In this section, the basic pseudo-random sampling function will 

be analyzed. 

Let each block sampliv   time    T      be divided into    N    equal 

segments of duration    T     ^    T /N    as shown in Figure i.10(a).    One 
s    p 

sampling instant is to be selected at some point in each T  interval 

I to give the required total of N sampling times per block interval. 

■ 

■ Now, let each segment of length    T      be subdivided into    N    uniformly 

spaced possible sampling instants spaced   A    =    T /N   apart as shown 
s 

in Figure 1*. 10(b). Only one of these N possible sampling instants 

will be selected by the sampling logic during each T  second time 
s 

segment.    The choice of which of the    N   possible sampling instants to 

select during each    T     segmem  is made by a pseudo-random number 
s 

generator as shown in Figure k.ll.    In this figure, a pulse train with 

I 
a period of    A    seconds between pulses drives a binary counter which 

counts to    N    in    T N&    seconds before being reset to tero to 

repeat the count during each T      second interval.    The Pseudo-Random 

Number Generator (FRNG) which is assumed to have a repetition cycle 

of   N    states is driven by the pulse train divided by    N.    The  PRNG 

thus changes states at the beginning of each    T     second segment shown 
s 

in Figure U.10(b) at the same time at which the binary counter is reset. 

At some time during each    T     second interval in which the PRNC  remains 
s 
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Figure h.10    Construction of Possible Sampling Times for 
Pseudo-Random Sampling 
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*Hhf%Mttlt   »►*  VH+tj cu^nl^f  «l«t« fti»4  lb«   IHW    P'»'e  Mill   !•    Id^.t-'^lil. 

i*i*<i««*f "M* c.rMiti n tvUt«, iM eoap«r«tor »Hi prudvie«. *•• n.wput 

r»-J+«,  UMI ««jM^iit^ !<.ei<wvi I« ehus»i. during «ach     ,    accord tnt»; «nI 

•i * «MUipU of   ,.    «•euad« fro« th« stArt of th*t Uu*rv»l (i»ivm\t,Hi 

tf •** mim of lit» IKKU.   Sine« th« PfWG has    N   tUt««, oiu  complet* 
N 

emK   t ^ «v^nif r» 0«0plln« tla«»   (ii} 1> generated In 

?_  • ^i tfc   «eeund« (one block Inteval) and the entire process is 

r«t>*«i«d fnd«flnlt«ly since the PRNO Is periodic. 

Dve HCCi; could be connected In a variety of ways to give 

«equences of varying lengths.    For example, the PRNG feedback could be 

connected to glv« a maximal length sequence for which the theory has 

been well developed  '19).    If the PRNG has an   m    stage shift register, 

the maximal length code length is    (2    - 1).    Thus, by making the 

block length    N   equal to the code length    (2    - l), an effective 

sampling time generator can be made whose sampling spectrum, although 

not of minimum variance, exhibits a high degree of randomness.    With 

minor modifications, a PRNG can be made to generate shorter repetitive 

sequences of varying lengths, thus giving more freedom in the selection 

of a sampling scheme. 

Assuming the system shown in Figure U.ll is used to generate a 

set of repetitive nonuniform sampling times with    N   samples per 

block, the results of this chapter can be used to predict the properties 

of the sampling spectrum.    The expression for the sampling coefficients 

a.    can be found by letting 

■WiiPWW» 

MM 



.    WWmm '■4' immm' 

r 

i it 

l      -    (o -   1) T    •       ;.     ,    i, !, I,  J.   ...   ,  tt (% *o) 

-.1»       n 

In thla case, hin* v   T T /N   and   .\ T /K .    Jit«» ih* ilxk 
s p J' 

Interval    T     Is dubdlvided Into    tr    |. >38ib;* «>qki«lly a|>acad tmrniH^ 

times as shown in Flpure li.IO,  the icrl 'licity    K    if    a.     as gl 

by Equation ('».i"'' 1?.    K    -    N      and thfc spectral perlüd In Ht is 

N f ,    where    f     =   ■— .    Tlie average power of   a.     at» given by 

Equation V'.ll) is t. constant equal to 

veil 

K 
r—i 

1 

k=l 
\ 

I 
N 

and the average value of    a.     as given in Equation {U .20) is either 

l/N   or    0    depending on whether or not the last sample    t.,    occurs 

at the end point of the block interval    T . 
P 

As an example of this technique, a computer program was written 

f.o simulate the sampling time generator of Figure h .11,    A PRNG with 

a ^-stage shift register was simulated with feedback connections to 

3 
give a .iwifima.! length sequence of length N = 7 = 2 - 1. 

Figure It.12(a) shows that each basic block interval of length T 
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H»r|«4 .f    t .^ *,      i^ «i..^«  |* M« ««»)•. A«»  .««t«*«      t* 

• I AM«  t^BMA«'^    «• «»M •* %ll  i*>>*-  ♦fMf^r^M»    •••«;•♦ » liwuw»  f»« 
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T*«^        » ^..|«    U   «:«,.    «.:«■».A     .>     <.M»t««l4«   AIM»    ><*44M«**'     »f 
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fo«   A*«     «««   «MA-l^Wi   .♦«■-♦^.«   «I««««»«»   -f     M«   « 

••>«   i««^   «t*tA«^    of   ft#^««   tU*      l--^»A«%A«*   Aft«   C^I^JA^t-A 

^   «»««A/    of   «fiWAf%;   «Nt^A«.«»   ««ft««»«!,^  r.«   tma      *     •»It»    I* 

«BMk.|»m*« v,  %;; «»aKA«» «MMM%<I<M *>   A** H«U«°-#«*44» *«»II/Nt 
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*»*A  «fffVKA;.«  f #    » .  |      «tf«'.,«i4NftA«:.>   . «»«••    «    I*  A*« «»«•«r    r 
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;♦   .ii'«}*««      v»«*     *    *    1 •    ****     4    *****  ««nl»A   t^.1*:»,» M>lf    f 

••♦•  ««nt.«* «M • •».••»«♦I« •m-.^.-'.   »|  »«««««•.•(»Ik. i*  mtl*'—i      Häm*. 

» ,; *.     •♦'♦   •••»«•f  ♦♦♦  •   Ml  »»4M«   «%.«•   »f     I«,     ■»• MfltfM«!«* 

«rr«R' u »4.. :.«^(«t |««*«^'. «M4 «Mr.** r; JC. ^•■. i .#-   f  % ««>*«* • 

I«   .it«««'!««      -'M*  ».»♦*«*«i -* »ffMr^  wilt t« t«".'.««  uw«'-'«'«'«! ;•■••» 

I* *l#>r« i i» *»•#• « fUSflJ •«»♦;i^ «»«e'.r* l* t>i^i«4 for   »    -    *, 

:♦- >->«»■.•#  <. nit:* «fr««* «lit t« »IWM«» M »*»« infi^rH«!^ l«piieftti<iA« 

i*. «IM» raAMtl»    f '•#« fuftf«9*.ie f«et>>^««« far eorrvlaüon f+ix«. I^JJI 

vf elipf«d lie*«.I«*,   «l^-v'*- 

•:v« ft««i>Uti4 f-tftctloA «h *»•. In M^r« 4>.U'c) frr CM« 6, which 

IMM   *-l/ JA» jccwrrvflC« af Mr» In IU)u*il>n  'i.S6) or Equation (k.57), 

«%* lit* Met ".Mt tJMld t»« fciMnd l>y • il»i'«4 trial and «rror »•arch 

Tt* quMilan of atsUtanea of a ira« (alnlwM varlanca laspllng runctlon 

for   n T   and    K ^9   I« still opan. 
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|i^*rfr%i    i ►  '    >  »      •-,»4« *<4MM« ioik. »r t^^u-*    % if    ««k t« 

Cuik4l4*fw« ".*•■*» »MIU *-  of    «    MCI.»««  «*4fo««l# «|*irllN>l«« 

ik. («MM«    «•»   t*   «M« i* "-»J** »««i»; I« ••• 

In ar4»r to «k« •   ~h—\~ chote«.    1m Mulling ewl» for C«M *! tt 

Idmtte«! lo ttet of CM« I «wvpt i!wi ft 4irr»r«ni tniiUl turttni 

point In th« ••quMC« MM MSUMö, which 1« «qulvalcnt to • 

redefinition of tho tUw origin of th* Mppllng block.    1)» vtrlwic« 

2 
K 

and all spectral coaponants    ML      wara found to ba Identical 

indapandanl of tha itartlng point, 

l Tha reivilts of tha coaparlson of tha axaaplai of Plgura I*.12 

can ba «uanarUed as follows: 
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♦   -    «i«.m>;«» »f   »    ♦»• f»^ 

€        «to*., *%{«...<«► ««•'.•.«  ««Mf;!^   f^4<^U>'*  ««I- *«   ».t^4«   »lA* 

|a««»f       f ,   *u«.   MA-IHIW»    «««l»**«   «««tUAHi   r«A«(^|»«M. 

if M«># ««ui. %#• *irn«*i< i« r%»4 

I«   «•|f««^M*4 V/   n#.»» it)   **it*   •Uovt   '.*m   iKt'.l»;   t«<>#M°fe   »f '♦• 

«MTllNI »»«v^r^» #•**»•*•* »7 ♦  '«ft««» nm^      •■»• i*:w. c«>4ft »| 

l«fttft»  tt     •   I»    *     If    l« UM* «a  MlMI   «tt.|Ct »f  if4 fmMI»t« 

Mowwr, MUJT   %   -    9$   MnpiM («r tt.«» iM*r«ftl •#• *♦•<, »o ■** 

K   -    9^(l<7)    -    12,1 tf   which I« •9i«*l i« in« lout fMMMr -f 

pots i bit Mapllnf tlAM.    AltlkOMfh only **»*%    t/tt    of • loi«l •poe«r«t 

ptrtod It shown In ftfurs k.l3t th« soetto«   fraa   k    -    100    to 
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CHAPTER V 

APPLICATION OF BLOCK SAMPLING TO CORRELATION 

FUNCTIONS OF CLIPPED SINUSOIDAL SIGNALS 

5.1        Introduction 

In Chapter III, correlation function properties of clipped 

sinusoidal signals with uniform sampling were investigated.    As shown 

in Figure 3.10, the uniform sampling produced undesirably large 

correlations for some reference frequencies due to the presence of 

odd harmonics caused by clipping.    For example, the frequencies that 

respond to the third harmonics have nominal correlations of l/3 

of the fundamental correlation.    Likewise, the fifth harmonics 

generate correlations of about    1/5    of the fundamental response at 

st some frequencies and, in general, the  (2n + 1)      harmonic produces a 

correlation of about    ;-        .. 1    relative to the fundamental response. 

In Section 3.5, the use of nonuniform "block" sampling was proposed 

to reduce these odd harmonic correlations by destroying the synchronism 

between the uniform sampling peridocity and the periodicity of the odd 

signal harmonics. 

In Chapter IV,  "block sampling" was defined and some of its 

properties were developed; namely, the spectral periodicity properties, 

the average power spectrum properties,  the requirements for minimum 

variance of the sampling coefficient power spectrum and small   k 
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spectral amplitude suppression for PRNG sampling. In this chapter, 

these block sampling results will be applied to the reduction of odd 

harmonic responses in correlation functions of clipped sinusoids. A 

specific correlation function example is included using a PRNG 

generated sampling function similar to the one discussed in Section U.7. 

This chapter considers the basic reasons for the ability of 

block sampling to reduce the odd harmonic responses of correlation 

functions of clipped sinusoidal signals.  In the next section, a 

qualitative correlation function analysis with block sampling will be 

made to help develop insight into the problem and to help predict 

which of the reference frequencies will have the greatest response 

for a given input frequency. 

5.2   Qualitative Analysis of Correlation Functions with Block 

Sampling 

The ideal block sampling quadrature correlation function model 

of Figure 5-1 is useful for analyzing the relationships between the 

input frequency    f,    and the reference frequencies    fR    which produce 

significant correlations.    Since the frequency difference    (fR - fT) 

is the important parameter in this chapter, we will adopt the point 

of view of holding the input frequency    f.    constant while varying 

the reference frequency   fR   to study the correlation function 

dependence upon the frequencies    f,    and    fR.    The spectra of the 

pre-envelopes    p (t)    and   p *(t-T)    at the sampler inputs are shown x y 

in Figure 3.6, while the spectrum of a typical block sampling function 
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is shown in Figure ^.5.    The spectrums of the sampler outputs    p  (t.) 

and    p *(t.-T)    are equal to the convolution of the sampler input 

spectrum (Figure 3.6) and the sampling spectrum (Figure 4.5).     Thus, 

if    X(f)    and Y*(f)    represent the Fourier Transforms of    pv.(t)    and 
3% 

p *(t) and P(f) is the block sampling spectrum given by 

Equation (4.7), then 

I 

x(f) /_    (2n + 1) 
n=0 

P[f -  (.l)n (2n + 1) fj] 

00 00 

k*     1    1    TZTTTJ    Kf (-1)" (2n+ 1) fj - kfp], 

n=0   k=-oo 

(5.1) 

00 

Y#(f) = 7   Y  -ferl-Ti   pff + (-1)q (2q+1) V 
q=0 

oc or 

*    L    L     (2q + i) 
q=0    i=-oo 

6[f + (.l)q  (2q+ 1) fR -  £fp]. 

where 

(5-2) 

a,     =    sampling spectrvun coefficient (see Equation 4.6),  and 

T     =    l/f     =   block sampling period in seconds. 

9 

The complex spectrum   Z (f)    of the correlation function    ^(T) 

of Figure 5.1 is given by: 



I is 

r 

^ 

25(0 =    X(f) Y-(-f) 

oo          ou           u-          .1,           /    1 iH'Q 

16   v   V   \   \'   (^    •"•' 
n       n=0    q=0    k--flo /=»-« 

• 6[f - (-l)n (2n + 1) f. - jjr) Mf - (-l)q (24 • l) fH-4-: 
P P 

5.3) 

Although Equation (5.3) is not a useful analytic «xpresslon for 

computing the actual correlation function, It is useful for determining 

which reference frequencies fR, combined with a given input frequency 

fT, can cause the largest odd harmonic correlations. 

Typical plots of X(f) and Y#(-f) from Equations (5.1) and 

(5.2) are shown In Figures 5.2 and 5.3.  These plots show that the 

total spectrum of each sampler output consists of the sum of 

contributions from all odd harmonics (only the fundamental, third, 

and fifth of which are shown in each figure). The spectral 

contribution of each n   odd harmonic is seen from these figures 

to be the complete block sampling spectrum of Figure it .5, modified 

in amplitude by -75—T~TT  and centered about f = (-l)n (2n«.) f. 

for the input frequency harmonics and about f - (-l)*' (2q » 1) f,. 

for the reference frequency harmonics. Each spectral component can 

be computed using Equation (4.6) for a specific block sampling 

function. Thus, all of the properties derived for block sampling 

■^■MMMMaBI Ad 
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ipcctrt In Chapter IV can be applied to the analysis of correlation 

functions for cllppei sinusoidal signals with block sampling. 

^ Since the correlation function spectrum, by Equation (5-3), 

it equal to the product of the two discrete spectrums shown in 

Figures 5.2 and 5.3, it is obvious that some values of   fT   and f 

will produce greatly different output spectra than other values. 

For example, values of   f,   and   fR   can be picked such that no 

frequency components of   X(f) and y*(-f)    align, and the resulting 

correlation function spectrum (and also the correlation amplitude) 

will be zero.    On the other hand, for some combinations of   fT, f_, 

and f ,    maximum alignment of input and reference spectral components 

will occur which will tend to maximize the correlation.    More 

precisely, since each component   a,     of the block sampling spectrum 

is a complex quantity, the spectrum    Z^Cf)    consists of complex 

components which are products of two or more complex coefficients. 

Since the correlation function is proportional to the integral 
00 

I        Z_(f) eJ df,    the peak correlation depends upon the 

relative phases and amplitudes of all of the complex components in 

Z_(f).    Although precise equations will te derived in the following 

sections,  it is,  in general, qualitatively true that values of   fT, 
I 

f_, and f     that minimize   alignment of spectral components result  in 
K p 

lower average correlations than values which maximize spectral 

component alignment. 

/•-^ Using this as a rough criterion, we can derive some 

relationships between f,, fR, and f     which result in maximum 

i 
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alignment of spectral components and, hence, larger average 

correlations. Considering first the spectrum of the pre-envelope 

of the input signal as shown in Figure 5.2, it can  be seen that the 

relation 

kfi = miV (5A) 

where mT is any positive integer, is a sufficient condition to insure 

alignment of all input odd harmonic spectral components on a set of 

frequencies with f  separation. For this special case, the spectrum 

of X(f) reduces to one similar to the example shown in Figure 5.4. 

In the same manner, the relation 

4f, 

M 

=    inRfp' (5.5) 

where   m_    is any positive integer, assures the alignment of all 

reference odd harmonics on the set of frequencies shown in Figure 5.5. 

Each of the complex spectral components represented in Figures 5.4 

and 5-5 is thus the vector sum of an infinite number of weighted complex 

coefficients, one for each odd harmonic.    These cases, represented by 

Equation ij.h) and (5.5)> can be though of as "Worst Cases"    in the 

sense that the spectral energy is distributed over the fewest possible 

frequencies rather than being distributed over a greater number of 

frequencies with smaller average amplitude. 

Even though   ktT    and   4f_    are multiples of   t     as given by 
in P 

Equations (5.4) and (5.5 )f the product spectrum will be zero unless 

■■ 
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the non-sero spect'«'  rcmpuntmli of   f.    sh «wn In Fl*?•:«•« *>,>■  align 

with those of   fR    ohowri In Figure 5.5; i.e.,   ii.Iess 

<fI ■ V 35.   f   , d   p' (5.6) 

where ri. 's any ponitive or negative integer. 

Equations (5.U), (5.5) and (5.6) thus define the conditions on 

f., f0, and f  which result in the Worst Case correlation responses. 1  n     p 

Let the input frequency tj   be fixed and satisfy Equation (5-'*)> 

and consider the problem of finding all the reference frequencies fR, 

satisfying Equations (5.5) and (5.6). 

It should be noted chat Just because a reference frequency 

satisfies the Worst Case criteria doe« not necessarily imply that the 

corresponding peak correlation wi.M be high.  The actual correlation 

amplitude for given values of f, and fw in  proportional to the 

vector sum of a large number of complex numbers (spectral coefficients) 

and thus can be relatively small or relatively large. Xt will be shown 

later, however, that the average correlation is the largest for the 

Worst Case frequency conditions, and that the correlation variance 

about the average value over all Worst Case frequencies can be 

relatively large. 

If f, is a fixed input frequency satisfying Uf    - mT f , 

then the Worst Case reference frequencies satisfying Fquat'.ons (5.5) 

and (5.6) are given by 

fR = fiimfP' (5.7) 

wvUÄÄJäW**8**^ 

L ./..•^■MHMM  n 
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where m   1, 2, 3  Thus, the Worst Co^e reference frequencies 

are f Hz apart for a fixed input frcq-ienc/ -_. Each time the input 

^ frequency fj is "ncremented by l/U f  from i ;s initial value, a 

new set of reference frequencies, each separated iy f Hz, will 

satisfy the Worst Case conditions. 

It is also of interest to briefly consider ^ther combinations 

of fT, f0 and f  which lead to a non-zero correlation function In     p 

spectrum Z(f), but which do not meet the Worst Cas" criteria. For 

example, we can let the input frequency satisfy th« Vorst Case 

condition, ^f- = raT f , and ask how many non-zero reference 

frequencies exist between each pair of Worst Case reference frequencies 

given by Equation (57). If f-r is held fixed and f_ is moved from 

its Worst Case value by l/3 f , the third harmonic spectral 

components of fR (see Figure 5-^) will align with the ^-"ctral 

components of fT (see Figure 5A) and a non-zero correlation 

function spectrum will result whose average power (as wil i be shown 

in Section 5«^) is about l/3 of the Worst Case average power. Moving 

f,, by another increment of 1/3 f^ produces a similar rssult. Using 

a similar argument for the higher order odd harmonics, the set of 

non-zero response frequencies shown in Figure 5.6 can be con tructed. 

Although only the non-zero reference frequencies caused by the third, 

fifth, and seventh harmonics are shown in Figure 5.6, similer responses 

due to all higher order odd harmonics are also present. 

C 
i 

Now, consider the case where the input frequency does r -it t 

satisfy the Worst Case condition    ktx    -    mT f .    Let    f.r be ar i 1    p i 

■■■•■■«■■MBa.aaaiaaMHaaasiaMiMMMlHMliMM^MMIIMaaMBaliaaaaftmal ■■ii 
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Figure 5.6    Non-Zero Reference Frequencies When   ktj   =    m-f 
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arbitrary distance x away from the nearest Worst Case frequency as 

shown in Figure 5.7(a). For this general case, the input and 

reference harmonic spectra will not align as shown in Figures 5.4 and 

5.5» but will be similar to those shown in Figures 5.2 and 5.3. The 

odd harmonic reference response pattern similar to that of Figure 5«6 

now becomes more complex because the alignment of all possible pairs 

of reference and input odd harmonics must now be considered. However, 

it is instructive to consider the most significant alignment 

combinations as shown in Figure 5.7(b). This figure includes all 

possible alignment combinations of the fundamental, third and fifth 

harmonics of the input and reference frequencies. Figure 5.7(b) shows 

that, relative to Figure 5«6, two more reference frequencies respond 

to both the third and fifth harmonic terms and that the average 

responses of Figure 5-7(b) are somewhat lower (by about 20 percent) 

whan the corresponding responses of Figure 5-6. 

Figures 5-6 and 5-7 both show that, although minor responses 

are present due to the odd harmonics, the dominant terms are those 

for which 

fR   fj + m fp. 

where m   ^1,^2,>3, ... . Although the Worst Case correlation 

responses shown In Figure 5*6 are somewhat higher (about 20 percent) 

on the average than the corresponding terms in Figure 5.7, the 

correlation variance (fluctuation) at these frequencies will be shown 

to be large enough to make this difference less significant. 
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Careful selection of the sampling spectrum periodicity K is 

important if undesirably large extraneous correlations, equal to those 

for the uniform sampling case of Chapter III, are to be avoided. For 

example, if the Worst Case conditions are met and if the third harmonic 

periodicity (see Figures 5.2 and 5.3) of the input spectrum coincides 

with some reference frequency fR, then that reference frequency will 

produce a peak correlation of about 33 percent relative to the 

fundamental response of unity.  That is, if (-3fT + NKf ) - f^ for 
i. p n 

some reference frequency    fR,    where    N   is any integer, then this 

undesirable situation exists.    Similar conditions for the fifth 

harmonic results in approximately a 20 percent correlation.    Since 

the periodicity   K   is usually controllable by choice of sampling 

times, undesirable fundamental,  third, and fifth harmonic responses 

can be avoided by choosing   K   to satisfy the following inequalities: 

and 

VNKfp    /    fR, 

fj - NK fp    ^    3fR. 

fR.NKfp    y    -Sfj. 

VNKfp    /    5fR 

fR+NKV    5fI 

for any f. or fR in the range of interest where N is any positive 

or negative integer. Similar conditions can be derived for higher 

harmonics. 
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The qualitative remarks based on the model of Figure 5*1 and 

the frequency plots of Figures 5.2 though 5.7 have been based on the 

assumption of sinusoidal signals of infinite time duration and thus of 

spectral lines of zero width. For signals of finite duration T, 

each of these spectral lines have a finite width of approximately 

l/T Hz and, therefore, the spectral picture becomes a continuous 

"smeared" one instead of a discrete one as described by this model. 

The real value of this model lies in its ability to help us gain 

qualitative insight into some of the complexities of the system 

response and to help predict the Worst Case reference frequencies for 

a given input frequency. 

5.3   Deterministic Analysis 

In order to obtain a useful quantitative correlation function 

expression with block sampling, consider the model of Figure 5.8. 

This model, based on a similar model in Tou [36], represent nonuniform 

block sampling as parallel uniform sampling (at the block rate T ) 

of N delayed versions of the signal, where the delays are equal to 

the N nonunlform sampling times < t. >    in each block interval. 

w(mT ) represents the average of the N samples in each block 

interval and the correlation function Z/-(T) is formed by averaging 

over a signal duration time of M blocks or T seconds where 

M -    T/T . Since the input and reference are both deterministic 

sinusoidal signals and since the sampling Instants \t.j   are assumed 

known, the complex output correlation Z/-(T) is a deterministic 

function whose real and imaginary parts are equal to the quadrature 
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phMt of th« corrtUtlon function b«twttn   x(t)   and   y(t).    The 

relativt phase     0     between the Input end reference einusoide It 

chosen to be tero without Loss of generality since %ny value of   0 

can be represented by an equivalent value of time delay    t. 

If the pre-envelopetof the clipped sinusoidal signals are 

represented as in Chapter III by the Fourier Series representationr 

L      f'        /  nn J(-I)n (2n + I) wTt 

n--=0 

and 

V(t)   =   -*     L    ife^   e ' (5-9) 
q=0 

then, from Figure $.8, the correlation function   2^(0    is 

M N 

T5   fmr, 
p      i  ry     p 

•(T)    =   h       )       k*       )      p (mT    + t.) p *(mT    + t.   + T) r   ' M       /        2N       /       ^xv    p        i     y       P        1 
m-l i=l 

M N OO 00 

j - 8. iV  V  V  V      (-i)n+q 

2    m    /_/_/_      /_     (2n + l)(2q + 1) 
n m=l    i=l    n=0    q=0 

I j(-l)n (2n + 1) a) (mT    + t  )        -j(-l)q (2q + l) w (mT +t.+t) 
.    e I      P        i     . e R      p   i 

I (5-10) 

where    n   denotes the input odd harmonics and   q   denotes the reference 

I     ■ ' odd harmonics.    Changing the order of summation of Equation  (5.10) gives 

M^aM^^MMMMi^BkMMMMMaMMMaMMHtMMBiMBMHaii 
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Z
6
(T)

    
=   ~Z       L        L (2n+l)(2q-H)  

^ "        n=0     q=0 

N 

1 y 
-jSntJl-l^CSq+l) fR-(-l)

n(2n+l) f^ 
e 

1=1 

1       ^       -^^[(-D^Eq+l) fR-(-l)
n(2n+l) f^.     (5.11) 

M       /       ' 
P 

in=l 

For specific values cf    fR   and    fT,    Equation (5.11) gives the 

deterministic correlation function as a function of time delay    T. 

This equation shows that, in general,    Zg^)    contains contributions 

from all input and reference odd harmonics.    Each of these terms has 

an amplitude and a phase which are functions of the harmonic order 

(n   and   q),    the specific frequencies    (fr,    and    f,.), the nonuniform 

sampling instants    (t.),    the block sampling period   (T ),    the number 

of samples per block    (N),    and the number of blocks in a signal length 

(M).    The real part of    ZrU),    ^("OJ    which represents the "in-phase" 

correlation function, thus consists of the sum of an infinite number of 

sinusoidal terms whose amplitudes, frequencies,  and phases are 

determined by these parameters.    As will be shown later by a specific 

example, this results in a correlation function with a "noisy" carrier; 

i.e., the basic sinusoidal carrier term at frequency   fR(k = n = 0) in 

■J Equation (5.11) is modified by the other odd harmonic terms to create a 

resultant correlation function which is deterministic but irregular 

in shape. 
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Although Equation (5.11) is exact for all frequencies f- and 

f_, it is quite cumbersome to work with, in general, because of the 

four summations. However, a considerable simplification results for 

the important Worst Case frequencies described by Equations (5 •4)» 

(5.5), and (5.6); i.e., when 

"'i - "iV 

"R =  "R'P 

(fI ■fR)    =    "dV 

and 

(5.12) 

where   m.,    m^,    and   m.    are integers.    This simplification results 

because, when these three conditions are satisfied, the term 

• [(-l)q(2q + 1) fR -  (-l)n (2n + l) f,],    which represents the frequency 

difference between the    (2q + l) reference harmonic and the    (2n + l) 

input harmonic, reduces to a multiple of   f ; i.e., whenever the 

conditions of Equation (5-12) are satisfied, it can be shown that 

[(-l)q (2q + 1) fR -  (-l)n  (2n + l) fj]    =    k f      =   i- 
p 

(5.13) 

where k is a positive or negative integer which depends on m., nL, 

and m.. When the Worst Case conditions described by Equations (5.12) 

4% and (5.13) exist, the final summation over m in Equation (5.11) 

reduces to 
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1^9 

1  ^   -J2«mTp[(-l)
q (2q+l) fR - (-1)° (2n+l) fj] 

M  /  e 

m=l 

M 

-k   I 
m=l 

(5.1^) 

for all k and n, and the sumnation over 1 can be expressed In 

terms of the sampling coefficients of Chapter IV as 

1  f-  -J2«ti[(.l)
q (2q+l) fR - (-l)n (2n+l) fj] 

i=l 

N   ^2«^ k 

= i  X e   P   = ak. (5.15) 
i=l 

where k is an integer given by k =  [(-l)q(2q+l)^ - (-l)n(2n+l)1p]. 

Thus, for the Worst Case frequencies, described by Equation (5.12), 

Equation (5.11) reduces to 

, (T) . L   y y ^C x  .■J<-1),(^1' v.     (5.i6) 
Z6^T; "  2   /   /_ (2n+l)(ai+l)  e 

fl   n=0 q=0 

Equation (5.16) shows that the correlation function for this case can 

be written in terms of the odd input and inference harmonics and of 

the nonuniform sampling coefficients    a. ,    discussed   in Chapter IV, 

thus illustrating the important role of these coefficients.    The 
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distinguishing feature vf ''J-tt Worst Case frequencies is that the 

summation over    m    in Equation  ' ,.rt) is equal to its maximum value of 

unityfor all    q    and    n   which is cquivalert to saying that 

corresponding samples    t.    in all sampl f.ng ulockß occur at the same 

input and reference phase.    For non-worst case  fr/Jru^nciKj,, this 

summation over   m    serves as an attenuation factor wri;... reduces the 

average correlation envelope response as will be shown in Sect'.1:3 ri.l*. 

If the coefficients    a,     are written as    a» /       v    to show '\u* k K(q,n) 

dependence of   k    on the odd harmonic indices    q and n,    Equation ('^.1''^ 

can be expanded to illustrate the contribution of each odd harmonic 

T    Z
6
(T)

    
=    ak(0,0)  e -3ak(0,l)e +5ak(0,2)e + 

1 d3V  .       1 J3(JRT 

3 ak(i,o) e       + T3T(37 ak(i,i) 

l J3ajRT , l -J5V 
T31T57 ak(l,2) e ■'"  '•• H'5 ak(2,0) e 

1 -^V  .       1 -J5u,RT 

- T5)T37 ak(2,i) e        +mT)\{2>2)e 

i 
1 J7ü,RT 

7ak(3,0) e +  ... (5.17) 

Equation (5.1?)  shows that the correlator output    zgCO    is 

equal to the sum of sinusoidal (or exponential) terms whose amplitudes 
la. /       J 

are equal to    r^mTgH+ll  '    who8e frequencies are given by (2q+l)fR, 
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and whose phases are determined by the phase of the complex coefficient 

a, /  \. Since, by Chapter IV, the a,  terms can vary greatly in both 

amplitude and phase from term to term, the summation given by 

Equation (5.17), in general, leads to an irregularly shaped waveform 

which is periodic at the period of the reference frequency fR; i.e., 

which has a period of l/fR. 

Because of the amplitude weighting of unity, the most 

significant term in Equation (5.1?) is the a./- 0\ term at the 

fundamental frequency fr,. One point of view might be to consider 

the flL-fo n^ e      term of Equation (5.1?) as the principal carrier 

term and the remaining terms as additive "noise" terms, although for 

some small valuer of a,/_ -v the noise terms may be larger than the 

principal term. Adopting this point of view, if we wish to minimize 

the odd harmonic correlation responses, we should try to keep \(Q  A\ 

uniformly low in some sense for all the Worst Case frequency conditions. 

The a. /n ns    coefficient is a single  afficient in the block sampling 

spectrum where the integer k/. 0\ is given by 

f 
P 

k(0,0) = —^ ^ . (5.18; 

If a number of reference frequencies an input frequencies are to be 

considered, Equation (5.18) can be used to compute all applicable 

values of   k. 

/•"'■ One approach to finding an optimum set of   a^f/-, 0\ coefficients 

would be to try to choose the sampling times   ft. j  to minimize the 
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variance of over the k's given by Equation (5.I8).  In 
2 

over Chapter IV, a technique for minimizing the variance of I a, 

an entire period of the sampling spectrum was developed. The problem 
I 2 

of minimizing the variance of 
\ over an arbitrary set of   k's 

is a considerably more complicated problem and is not considered in 

this thesis.    Although the PRNG sampling technique described in 

I 2 
Section ^.7 does not minimize the variance of  a,    in a localized 

I 2 
k region, it has a similar property in that the values of  a. 

are suppressed well below the average spectral level of the localized 

region 1 < k < N/2. If the differences between the values of f 

and fT in Equation (5.18) are small so that all k(0,0) terms of 

interest occur in the region 1 < k(0,0) < N/2, the PRNG sampling 

technique is effective in substantially reducing the contribution of 

-jv in the correlation function the principal term,    &v(r) n.] ' 

expansion of Equation (5.IT). 

At the same time,  the PRNG sampling spectrum is reasonably 

uniform in amplitude for large    k    so that no higher order odd harmonic 

terms of Equation (5.17)    will dominate and create an unusually large 

correlation peak. 

5.k       Statistical Analysis 

Although the correlation function    Z/r(f)    of Figure 5.8 for 

fixed values of    fR    and    f,    is a deterministic function given by 

Equation (5.11),  it is sometimes useful to consider the statistical 

problem of finding the average properties of the correlation functions 

for all reference frequencies which respond to a given input frequency 
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as a function of the average properties of   a,     developed in 

Chapter IV.    For example, let the fixed input frequency    fT    satisfy 

the Worst Case condition   UfT    =    mT f     of Equation (5.12) and 

consider all reference frequencies which satisfy Worst Case conditions 

Uf_    =    m_ f     and (fT - fR)   =    m, t .    The corresponding correlation 

functions as given by Equation (5.l6) are 

Z
6
(T)

   
=   "2 I    I 

n=0      q=0 
(2n+l)(2qfl)      e 

j(.l)q  (2q+l) U)RT 

Since the a. 's vary for each set of Worst Case frequencies f.. 

and f_, this analysis will assume that the a-'s are random 

variables with a mean and mean square given by Equations (^.20) and 

(4.17) as 

"k \ 
k=l 

= 0 

\ 
1 
K 

K 

V 
/ 

k=l 
\ 

1 
N ' 

where    II    is the number of samples per block interval    T ,    and   K 

is the assumed period of the sampling spectrum    a^.    Choosing    T = 0 

as an arbitrary value of carrier phase, the average value of 

ZgCt)    at    T = 0   is 

(-1) 
n+q -— 

'6(0)    =    ZZ       L      L    (2n+l)(2q+l) 
n=0   q=0 

=    0 (5.18) 



FF 

154 

where the average is taken over all Worst Case input and reference 

frequencies.  The average squared value of Zg(0) taken over the same 

frequencies is 

:(0] 2   L    L      (2n+l)(2q+l) 
1(        n=0  q-0 

00     X     00     00 

6h 
IT 

/ . vn+q+p+r ;  

V  V  V ^       ..    Vq.n) a*k(p.r) 
L      L      L      (2n+l) (2q+l) (2p+l) (2r+l)     ' 

n=0 q=0 p=0 r=0 

(5.19) 

where the notation    a. ,      \    is used to denote the dependerce of   a, 

on the indices    n    and   q. 

Consider the average    a. /       s. a*k/       \      in Equation (5•19) 

over all input and reference frequencies satisfying   Uf     -    m_ f 

and    (fT - fr.)    -    m, f .    We can consider all possible Worst Case 
i n u    p 

input and reference frequencies by averaging both   m,    and    m.    over 

one sampling spectrxun period    K;    i.e., by considering 

Vq.n) a*k(p,r) 
1 
K 

m.-l 

K 
1   V 
K       _     Vq.n) ak(p,r), 

md-l 
(5.20) 

Substituting the expression for    a,     and interchanging the order of 

summation, Equation (5•20) becomes 

4» 
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^(q,!!) a k(p,r) 

= ^ y y £   L   L 
i=l h=l 

e  p 

^ -1=1 

.2« 
K  j^m [(-l)4(2q+l) ^ - (-I)*' (2p+l) th] 

L  „/I 

(5.21) 

where ^    =   J[(-l)q (2q+l) - (-l)n (2n+l)] and 

I2 = J^"1^ (2P+1) " (-:L)r (2r+l)] are both integers for all 

values of q, n, p and r. But, 

.2n 

-   ) e  p K   / 

Vh) 1 whenever (Ij^t. - I2th) - 0,+l,j_2, 

»r1 0 otherwise 

(5-22) 

and 

1 
K  -J^nid[(.l)

q(2q+l)ti 
1  -  P 

(-l)P(2pH) th] 

V1 

C 
1 whenever [(-1? (2q+l)ti - (.l)p(2p+l) th] = 0,+l,+2,, 

0 otherwise. 

(5.23) 
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a, /  \ a*, /  \ of Equation (5.21) will be non-zero only for those 
k(q,n)  k(p,r) 

values of q, n, p, r, t. and t.  which simultaneously make both 

Equations (5.22) and (5.23) non-zero. From Equation (5.22) and (5.23), 

the conditions on q, n, p, r, t. and t  which give non-zero 

contributions arer 

^(-l)q (2qfl) - (-1)" (2n+l)] ^ - J[(-l)P (2p+l) - (-l)r (2r+l)] th 

0, fl, +2, ... (5.2M 

and 

L'(-l)
q (2q+l)] ti - [(-1)P (2p+l)] th = 0, +1, +2, ... . (5.25) 

The principal non-zero   a, ,       v a* ,      x    terms occur when 
K(q,n)      k(p,r) 

and 

q " P. 

n = r 

h - V (5-26) 

thus satisfying both Equations  (5-2^) and (5.25) by making then equal 

to zero.    For these terms, 

N        N 

Vq.n) a k(p,r) jjä .r)    '-   b.      L      }_   1    =    I '  'for q = P. h = r) 
i=l    h=l 

i=h 

(5-27) 
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from Equation (5.21). In addition to the principal non-zero terras 

given by the Equations (5.26) and (5.27) which always exist for any 

^ set of sampling times, for a specific set of ^t./ , a few other 

isolated values of q, p, n, r, t. and t  may satisfy both 

Equations (5.2U) and (5.25) and produce small but non-zero values of 

a. /  \ a* /  N. For most sets of sampling times <t. > with a Tc(q,n)  k(p,r) *      *" V i-/ 

reasonable degree of randomness, the effects of these isolated 

contributions are second order and will thus be neglected in this 

analysis. 

Considering only the principal terms given by Equation (5.27), 

Equation (5.19) reduces to 

 ^ 2      -    I- (5.28) 
(2n+ir(2q+ir 

Equations  (5.18) and (5.28) show that for a fixed (arbitrary) 

value of    T,    the average value 01 the Worst Case correlation function 

is zero and their mean squared value is equal to   •=    independent of 

specific sampling times      t,     if the averages are taken over a complete 

sampling spectrum period    K.    Since    Zg(T)    is a complex function 

composed of the in-phase and quadrature correlation functions    *g(0 

and    *g( 0    (see Equations 2.1* - 2.6),    zg(0)    -    0    implies that both 

the in-phase and quadrature functions also have a zero mean.    The mean 

squared value of    l/N    given by Equation (5.28) is the average value 

of the squared "envelope" of   Zg(0)    since by Equation (2.6) UgU)! 

is defined as the envelope of   Zg(T)    in the usual sense of the rms 

1                    1 *. 00 00 

|z6(0) 
c 6i* v 

/ V 
it 

n=0 q-Ü 



JTf l[l  .  ..■■- 

158 

of the real and imaginary parts of zg(T)' Equations (5-18) and (5.28) 

thus give the correlation function statistics for a fixed value of T 

for all possible Worst Case frequency combinations. If only a limited 

number of reference frequencies are considered, the value of 

z^(0)    - l/N given by Equation (5.28) may not be representative 

of these reference frequencies. For example, if PRNG sampling is used 

and if the principal a,  terms of Equation (5.19) occur in the small 

% 

k    suppression region shown in Figure 4.13, the value of  |zr(0) 

can be considerably less than    l/N   as will be shown in Section 5'5' 

Since the function    Z^T)    is composed of the sum of a large 

number of contributions as shown in Equations  (5«ll) and (5.16), one 

would suspect intuitively that its measured probability distribution 

would be approximately Gaussian.    This was experimentally shown to be 

true by programming a digital computer to simulate the correlation 

function model of Figure 5-8 and then by measuring the correlation 

function statistics for the Worst Case input and reference frequencies. 

The results of these measurements are summarized in Section 5-5 for an 

example using PRNG sampling with    N   -    96 samples    per block interval. 

Although    VCO)    was experimentally shown to be approximately 

Gaussian, the correlation function considered as a function of   T 

does not meet the requirements of narrow-band Gaussian noise [13] 

because its spectrum is not confined to a narrow band due to the 

presence of the odd harmonic response    terms.    As a result, the 

correlation function   *A^)    cannot be approximated by the usual 

narrow-band assumptions as a sinusoidal function with a slowly varying 
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envelope as is evident from an examination of Equation (j.lS) and of 

the example of Figure 5.9 in Section 5.5.    Davenport and Root   [13] 

point out, however, that the assumption of a narrow-band spectrum is 

not necessary to show that if   ♦/-(O)    and    *g(0)    have Gaussian 

distri     iions, the function defined by 

£(0)    =      z6(0)|   =  y06(0)}2    +     (*6(0)} 

has a Rayleigh probability distribution 

P(E)    =   -^      e b      ,       ^>    0 
a6 

whose mean, mean-square, and variance are given by 

2 

en 
=       2    06 

e.2-     2  a* 
and 

2        /„      n^        2 
^ (2  - j)    a6  , 

p 
where    a/-      is the variance of the Gaussian random processes    "^(O) 

or    ^(O).    Thus,  if one samples the outputs    *g(')    of  all correlation 

functions      which satisfy the Worst Case conditions of Equation (5.12) 

at any fixed time    T,    those samples will have an approximate Gaussian 

distribution with a zero mean and a variance of   rr .    Likewise, 

samples of the output  "envelopes"     UgCOl   'or the 8M,e channels taken 

at any fixed time   T    will have an approximate Rayleigh distribution 
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with a mean of y ^   and a variance of [(2 - I)  •  gjj]-    This 

approximate statistical model of the Worst Case correlation function 

samples was verified experimentally as will be shown in Section 5'5« 

Although the statistical model of the correlation function as 

a wide-band Gaussian process with a Rayleigh envelope distribution is 

seen to fit the system model of Figure 5.1, the concept of   ^(■Ol    as 

an envelope normally has real significance only for narrow-band 

processes.    For example, if it is desired +0 compute the peak value of 

*/-(T)    over one period (see Figure 5-9)» it might be necessary to 

redefine the envelope of   zg(T)    in a more meaningful way. 

Equation (5.28) shows that if we relate the average properties 

of the correlation functions for all Worst Case frequencies to the 

average properties of the sampling spectrum coefficients from Chapter IV, 

the mean-squared value of   zg(0)    is given by 

zAO) =    1/N  , 

where N is the number of samples per block. We now wish to extend 

this analysis to the non-worst case frequency combinations shown in 

Figure 5.6 and 5«7 and discussed qualitatively in Section 5.2 in order 

to obtain a first order comparison between the correlation function 

statistics in these various conditions. For signals whose duration T 

is long relative to a block length T , the key to the differences in 

correlation for the different frequency combinations will be shown to 

lie in the sunmation over m in Equation (5.11); i.e., in 

(^J .,-«rt 

mm 
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r 
M 

-jSrtmT [(-l)q(2q+l) fR (-l)n(2n+l) fj] 

m=l 

where 

and 

M number of sampling blocks of length    T     in one signal 

duration    T, 

input frequency 

f,,    =    reference frequency. 

G 

It was shown in Equation (5.1^) that    F   =    1    for all    q    and 

n   for the Worst Case frequencies because the product 

P   =    T [(-l)q(2q+l) f„ -  (-l)n(2n+l)  fT]    is always equal to an 
p rv i 

integer for this case.    If either    fR    or    f,    do not satisfy the 

Worst Case conditions,    P   will not be an integer for all values of 

k   and   n   and the summation    F   will be less than unity in absolute 

value, thus acting as an attenuation factor in the correlation function 

of Equation (5.11).    For large   M,    the attenuation factor    F,    whose 

average value is proportional to    l/M,    will be a significant smoothing 

factor. 

As an example of the effect of the attenuation factor    F, 

consider the third harmonic response frequencies shown in Figure 5.6; 

i.e., those satisfying 
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Ufl " BIfp 

and 

fR = fI + mdfp + 5 fp' (5-30) 

where i = I or 2. From Equation (5.29), F becoot«: 

F - 
1    A     -J2ninTp[(.l)<,(2qn)fI-(.l)n(2n*l)f^(-l)q(2qn)(md*j)fpl 

ro=l 

1    r^      -J2ni4((-l)q(2qn)] 
R   1    e 

ro=l 

and 

=    I when (2q*l)   =   3, 9, 15, 21, etc. 

F 

<   i   otherwise If   M > 3. 

F     £   IS    » the correlation function at    T = 0   for the 

If we assume   M   Is large and neglect all values of   n   and   q    for 

which 

frequencies satisfying the conditions of Equation (5.30) can be 

written [fron Equation (5*11)] as: 

8  f r-  (-1)"*'' s,. „, 

n=0 q=0 

and the mean squared value becomes 

wmmmmamM 
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8.(0) 
2. >* f   v   f   v      (-i)n"p+3q+U3r+1 

' 7" ^-  -  -  -  (2n+l)(6q+3)(2p+l)(6iM3) 
n=0 q-0 p 0 r=0 

fak(n,3q+l) a',k(p,3r+l)] 

6h      V     ^ l/N 
7  nTo qro (2n+l)

2(6q+3) 

1_ 
9N  ' 

which is 1/9 of the Worst Case value given by Equation (5.28). 

Under the same assumptions, it can be shown that for the fifth 

harmonic response frequencies of Figure 5.6 

zAO) 1   1 
25  * N  * 

and, in general, for the K   harmonic response 

z6(0) 
1     1 
T ' N • 
(K) 

c 

Thus, for the situation represented by Figure 5.6 in which the input 

frequency   t-    satisfies   Uf      -   m-f ,    the output power for the 

correlation function corresponding to the K     harmonic is inversely 

proportional to   YT    as a first approximation for large    M. 

Next, consider the conditions represented by Figure 5.7 where 

f-    does not satisfy the Worst Case input frequency condition;  i.e.. 



16h 

where   hfT    4    mTf  .    The reference frequencies with the maximum 
I    '       I p ^ 

response are the ones for which    fR    =    fT 
+ mjf •    For these 

frequencies,    F    from Equation (5.29) is 

1       ^       .J2ItmTj(.l)q(2q+l)fI-(.l)n(2n+l)fI+(-l)q (2q+l)mdfp] 
F " M   2_ e 

m=l 

1       ^       .j2nmTp[(.l)q(2q+l) ^ -  (-l)n(2n+l) fj] 
=    M       /        e 

m=l 

and 

- 1 when q = n 

< 1 otherwise. 

Although F      can occasionally be nearly equal to unity for    q ^ n, 

we can ngglect these terms with the result that our estimate of 

Z/-(0)   will be noisy; i.e., have a larger variance. Neglecting 

all terms for which F ^ 1, the complex correlation function at 

T - 0 for this case becomes: 

2 (o) =- 8    y   \iiusl 

and its mean squared value becomes: 
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r zAO) & V  ak(n.n) a,k(q1q) 

"   n"  k-o  (^l)2(2k+l)
2 

61* 
IT 

l/N 

rTo (2n+1) 

1 
N 

.661 
N 

(5.31) 

which can be compared with a value of l/N for the Worst Case 

condition of Figure 5.6. Therefore, if the input frequency does not 

satisfy the condition UfT - m.f , samples of $A0)    from all 

reference channels satisfying fR - f, + m.f  approximately satisfy 

a Gaussian distribution with a zero mean and a variance of TT,  , 3N  ' 

which is    2/3    of the Worst Case variance of   -xs   as shown in 

Figure 5.6.    Likewise, the envelope of   zg(0)   defined as      z6(0) 

has an approximate Rayleigh distribution with a mean of 

Using a similar analysis, all the third harmonic response 

frequencies shown in Figure 5.7 can be shown to have a mean squared 

value of    1/9    of the maximum response channel.    Likewise, the 

variance in the fifth harmonic channels is approximately     -r? • TTJ 

and,  in general,  for the    K       harmonic response the variance is 

approximately given by     ""p   "  3M    • 
K 

Although the statistical analysis in this section is not 

rigorous in the sense that the correlation functions it represents 

are actually deterministic,  it has utility in that, for long signals 
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with    M    »1,    it gives an approximate but useful model of the average 

correlation and its variation for all Worst Case frequencies.    For 

signals whose time duration   T    is not long relative to a block 

interval    T ,    the effects of the finite    T   often dominate the higher 

order harmonic effects as will be shown by some examples in Section 5.5- 

5.5        Example Using Pseudorandom Block Sampling 

In Section U.7, a method for generating a repetitive set of 

non-uniform sampling times using pseudorandom number generators 

(PRNG's) was described.    Although this sampling scheme was shown to be 

non minimum variance in general, it does possess a high degree of 

randomness, has a unique spectral amplitude suppression characteristic 

for small    k   and has a good deal of flexibility in the selection of 

the number of sampling times per block   N,    and the number of possible 

sampling instants per block   K.    A digital computer simulation of a 

quadrature correlation function for clipped sinusoids with pseudo- 

random block sampl ing was made in order to experimentally verify the 

theoretical model of Figure 5•8.    A summary of the results of   that 

simulation are presented in this section. 

The block sampling parameters chosen for the simulation are 

summarized in the following table: 

mmmmmimm 



167 

Parameter 

Simulation Value 

Example 1   Example 2 

Sample Pairs Per Block, N 

Possible Sampling Instants Per Block, K 

Blocks Per Signal Duration, M 

PRNG Codes 

96 2k 

12,  192 3048 

3 3 

Several Several 

As previously mentioned,  a typical correlation function for 

clipped sinusoids and pseudo-random sampling has a noiselike 

characteristic because of the presence of odd harmonic components and 

tends to lose the narrowband appearance of a linear correlation 

function with uniform sampling.    This fact is illustrated in Figure 5.9 

where one period of a typical correlation function from the simulation 

program for Example 1 is shown.    The two quadrature phases of the 

correlation function,  shown by the solid curves are seen to be    n/2 

phase shifted translations of each other.    Although the fundamental 

2n    "carrier'1 periodicity is still evident in these   functions, their 

"noisy" shapes vary considerably from the conventional sinusoidal 

carriers found in linear correlation functions.    The dashed curve in 

Figure 5.9 shows that the narrow band definition of envelope, as the 

square root of the sum of the squares of the two quadrature components, 

does not have the usual geometrical interpretation here of a slowly 

varying function passing through the peaks of the carrier. 

Some examples of correlator output functions are shown in 

Figure 5.10 for Example 2    (N = 2^),    where    ^(i)    is plotted for 
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NOTE: ONE CYCLE OF FUNDAMENTAL 
FREQUENCY, lR, SHOWN 

II 
» I. 

••RT 

Figure 5.9   Correlation Function Example Using 
Pseudo-Random Block Sampling (N = 96) 
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(a) TYPICAL WORST CASE REFERENCE OUTPUT 

(b) MATCHED CHANNEL (fjMp) OUTPUT 

Figure 5.10    Correlation Function Extrnples Using 
Pseudo-Random Block Sampling (N « 2U) 
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one output repetition period.    Hie typical Worst Case correlation 

function of Part (a) shows a high degree of randomness In the waveform 

** similar to that of Figure 5.9.    The correlation function shown in 

Part  (b) is for a perfectly matched frequency case in which the 

reference frequency   fR    is equal to the input frequency    f,.    For a 

correlation function with uniform sampling, the plot of Part (b) 

would have a linear sawtooth characteristic of period    2n. 

The deviation Irom linearity (i.e., the granularity) of the correlation 

function of Figure 5.10(b) as well as the stepwise character of 

Figure 5.10(a) is due both to the nonuniformity of the sampling function 

and to the relatively small number of samples per block    N. 

The computer simulation consisted of computing the exact 

correlation function by simulating two square waves with frequencies 

rR    and    f., time shifting the reference square wave, sampling both 

signals at the pseudo-random sampling times, and correlating the 

sampled signals.    The curves of Figures 5.9 &nd 5.10 were generated 

in this way using 100 increments of    U)_T    in a 2n    output interval. 

In addition, a second computer program, useful for studying the effects 

of specific harmonics, was written to compute the correlation function 

term by term from Equation (5.16).    Figure 5-11» which shows a typical 

I Worst Case output correlation function from the small    k    suppression 

region for Example 1    (N - 96),  shows a four-step comparison of the 

simulation model with the Equation  (5.16) expansion.    The dashed 

A curve, which is identical    in all three plots, represents the exact 

output correlation function while the four solid curves represent 

mmmmmmmammm 
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Figure 5.11    Comparisons of Typical Correlation Function with Output 
Approximations Using 1, 5> 10, and 55 Odd Harmonic Terms 
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approximations using Equation {5.16] with 1, 5>  10, and 55 terms. 

The    a, cn n\    term shovm in the top plot is not a major contributor 

since its peak amplitude is only about 1.6 percent.    This is 

characteristic of all Worst Case correlation functions in the small 

k    region.    The five-term approximation which contains the fundamental, 

third,  and fifth harmonic terms is seen to follow the general shape of 

the dashed curve, but the approximate correlation is inaccurate by as 

much as 6 percent and the high frequency variations are not present. 

The lO-term approximation, which has reduced the maximum error to 

about k percent,  is starting to conform a little more closely to the 

exact wave shape.    The 55-'term approximation shows the approximation 

slowly converging to the true correlation function.    This relatively 

slow convergence shows that a significant number of the    a,    terms in 

Equation (5 »16) are important and emphasizes the importance of 
2 

over the entire spectral period \ maintaining a low variance of 

while keeping the a^/Q ^ term low by small k suppression as 

discussed in Sections k.6  and k.'J. 

The significance of the small k spectral suppression effect, 

I 
a characteristic of all PRNG generated sequences, is seen by an 

examination of Figure 5.12 which shows three plots of peak output 

correlation (over    a CORT - 2n interval) versus reference frequency 

for fixed input frequency.    Figure 5.12(a) shows a typical example 

for reference frequencies with    a. /n n*    terms in the high   k    region 

and a Worst Case input frequency satisfying    4fT    -    m f   ,    The 

reference frequencies marked    (w!)    are the computed Worst Case 

-■    ■     ..JK.J.^..^....~-|1.r(1ft(|M|.nM|j|) 

■■«HtfMMMWH« ■MMMMMHMIMHBHM 
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frequencies satisfying   i*t "JJ' •    Because of the finite signal 

duration of   T   seconds, the typically large peak correlations 

associated with the Worst Case reference frequencies extend over 

approximately a reference frequency region of width    l/T.   Although 

the maximum of the Ja^jged peak correlation versus reference frequency 

curve occurs near the   TwJ   points, they do not always fall exactly 

on the Worst Case frequencies (e.g., see    fVLJ    )•    Although the   Iw) 

frequencies tend to have the largest correlations, sometimes, as jhown 

at    (wTj    , the odd harmonic terms add in such a way that the peak 

correlation never achieves a significant value.    As shown in 

Figure 5'12(a), the higher order odd harmonic effects occurring between 

the   (w)   frequencies are essentially dominated by the    l/T   spreading 

effects for the particular parameters (high N, low M)    of this 

example.    The example shown In Figure ^.12(b), which covers reference 

frequencies In the small    k   suppression region, shows typical 

reductions in the Worst Case frequency peak correlation of about 

33 percent relative to those for Figure 5.12(a).    This Is attributable 

to the absence of significant   a, ,- -*    terms in this region.    The 

average correlation level in the odd harmonic response region between 

Worst Case references, as expected, did not change from Figure 5.12(a) 

to Figure 5•12(b) because the    a.     terms for these harmonics are 

generally found in the high    k    spectral region in both cases.    The 

example of Figure 5.12(c) for a non-Worst Case input frequency shows 

much less fluctuation of peak correlation versus reference frequency 

because the Worst  Case frequencies are substantially reduced and the 
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odd harmonics are more randomly spaced in the reference frequency. 

The odd harmonic effects predicted in Section J.k would be more 

prominent   for examples   with longer    T    and larger    M. 

Section J.k discussed the possibility of assuming the     r      0 

samples of all Worst Case correlation functions    */-(0)    have a Gaussian 

probability distribution with a variance of   1/2N.    This assumption 

was verified experimentally as shown in Figure 5.13 using the computer 

simulation program.    Figure 5.13(a)  shows the results of 300 

measurements for Example 1  (N - 96) taken over a wide range of Worst 

Case reference frequencies, all with    a./. .%    terms in the high   k 

region.    The experimental histogram shown by the solid curve had a 

measured standard deviation of    0 =  7.5 percent or equivalently a 

variance of    0     =    O.OO5625    -      ' which deviates from the 

theoretical value of   ss   by only 8 percent.    The histogram is  seen to 

match the dashed Gaussian distribution with a theoretical standard 

deviation of 7.21 percent very closely except for very low correlations 

around zero,  a problem which is believed to be due to the fact that 

the granularity of the correlation function is roughly equal to the 

cell size used for plotting the histogram.    The absolute value of the 

correlation was used instead of its full positive and negative range 

in order to double the sample size in each cell.    Figure 5 13(b) shows 

a plot of the histogram of the "envelope'' function     zg(0) for the 

C 

same reference frequencies used in Figure 5.13(a) with a sample size of 
2 1 

150. The measured square value was Zg(0)   = 0.01l6   —jz— 
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Figure 5-13    Measured Correlation Histograms for Worst Case 
Frequencies in Large    k    Region -  PRNG Sampling  (N -  96) 
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compared with a theoretical value of l/N = O.OIOU. The data is 

seen to fit fairly well to the theoretical Rayleigh distribution with 

"E2 = l/N = 0.0104. 

Figure 5.l4 contains experimentally measured histograms for 

Worst Case reference frequencies from the small k spectral suppression 

region. Since, for the high k region, Equation (5.28) shows that the 

a, /_ _x terms contributed about —r- - 65.5 percent of the total 

variance measurement. Figure 5'^ shows that the ^^ nN contribution 

has been reduced by about 90 percent in the low k region. 

Because of the noisy nature of the envelope function Zg(i) ) 

the addition statistic MAX {^("Oy 5 the maximum value of the output 

correlation function over c  "rr period was measured and plotted for 

571 Worst Case channels in the small k region as shown in Figure 5.15 

for samples of data from Example 1 (N = 9^). A comparison of the peak 

statistic histogram of Figure 5.15 with the histogram of zg(0) 

Figure 5.IU shows that the mean of the peak distribution is about 

twice as large as the mean of the zg(0) distribution. 

in 

■AMMriHMMMM^M 



Ff 

178 

DATA SAMPLE SIZE =1163 
MEASURED STANDARO DEVIATION=4.76% 

|R 
0.434 

GAUSSIAN DISTRIBUTION 
FUNCTION («r = 4.76) 

in 
z 
üJ 
O 

CD 
< 
CO 
O 
or 
0. 

0.16 

0.14 

0.121- 

0.10 

0.08 

0.06 

0.04 

0 12 

Q 

2    4     6     8    10    12    14    16 
1^(0)1 ,     (PERCENT CORRELATION) 
I rD 1 

(0) 

DATA SAMPLE SIZE-290 
,    MEASURED MEAN SO, "x2  =0004025 
\ OR 

/ 
/ 
/ r 

\ 

-i  . 0366 
N 

RAYLEIGH DISTRIBUTION 
(<r = 4.5%) 

\ 

j 1   1  1 -l_l I I I I I L 

2    4    6    8     10    12    14   16    18 

26(0)|, (PERCENT CORRELATION) 
(b) 

Figure ^.lU    Measured Correlation Histograms for Worst Case 
references in Small    k    Suppression Region - 
PRNG Sampling    (N = 96) 
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CHAPTER VI 

SUMMARY MD CONCLUSIONS 

6.1 Statement of the Problem 

The general topic of the research reported in this thesis is the 

study of nonuniform block sampling theory and its application to the 

study of correlation functions of sampled signals that are limited to 

a frequency band. The research evolved from the specific problem of 

trying to reduce the odd harmonic terms which appear in the correlation 

function of hard limited and uniformly sampled sinusoidal signals. 

These odd harmonic terms arise because of the synchronism between the 

periodicity of the uniform samples and the periodicity of the odd 

signal harmonics produced by hard limiting. 

6.2 Approach 

The general approach to the problem was the use of nonuniform 

sampling to reduce the undesirable periodicity effects and thus to 

reduce the correlation function odd harmonic terms. A particularly 

useful class of nonuniform sampling functions for this application was 

found to be block sampling functions;'1 i.e., short sequences (or 

blocks) of nonuniform samples which are repeated periodically. 

As a preliminary to a study of block sampling functions and 

! their application to the odd harmonic problem, a detailed study of the 
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general properties of correlation functions for large    TW    signals 

with uniform sampling was made.    These results were then extended to 

the case of sinusoidal signals with uniform sampling to illustrate the 

role of both clipping and sampling in the generation of the undesirable 

odd harmonic terms in the correlation function.     The uniform sampling 

correlation function results along with the results of the block 

sampling spectrum analysis then formed the basis for analysis of 

correlation functions of sinusoidal signals with nonuniform block 

sampling. 

6.3       Discussion of Results 

In the study of correlation functions, two alternative 

definitions of sampled correlation functions were compared, the 

regular correlation function given by: 

M 

;(MTs)    =    i      Y     x(mTs) y(mTs) 
m-1 

and the qiadrature correlation function given by: 

M/2 

zq(MTs)    -    i       )     [x(2raTs) y(2mTs)  + £(2mTs) $(2mTs)], 

where   x(t) and y(t)    are the signals of duration   T   to be correlated 

and   x(t) and y(t)    are cheir Hilbert transforms.    The regular 

*    /Ä correlation function requires   M   uniform signal samples taken at    T 

second intervals in   T    seconds to compute each point of   z(MT ), i 

s 

). 
s 
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whereas the quadrature correlation function requires M/2 sample 

pairs of the signal and its Hilbert transform taken at 2T, second 
o 

intervals to compute    z (MT ).    It was shown that the basic difference 

between the two correlation function definitions is that quadrature 

correlation eliminates the second harmonic in the spectrum of the 

product   x(t)  • y(t).    One implication of the second harmonic 

elimination for undipped signlas was that (for sampling faster than 

the Shannon rate) the quadrature correlation function eliminates second 

harmonic sampling errors that occur in the regular correlation function. 

Another implication is that the sampled quadrature correlation function 

variance for narrowband stationary random signals is independent of 

sampling rate, whereas the regular correlation function variance 

versus sampling rate response contains large peaks at some values of 

f      due to the presence of the second harmonic.    Thus, for no increase 

in the number of computations per correlation function point, quadrature 

correlation, in general, achieves more accurate correlation for 

deterministic signals and lower variance at all sampling rates for 

narrowband random process signals. 

A comparison of the sampled quadrature correlation function 

variance for clipped and undipped narrowband random processes showed 

that, although some second harmonic effects appeared for the dipped 

signal case, the variance could be reduced by as much as 3 dB by 

sampling faster than the Shannon rate. 

In extending the study of quadrature correlation function 

properties to sinusoidal signals, the effects of linear sampling and 

MMMMHI 
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clipping were derived separately and the combined effects of both 

sampling and clipping were examined.    Uniform sampling was shown to 

make the correlation function periodic  (as a function of frequency) 

with a repetition period equal to the sampling rate, while clipping 

was shown to introduce extraneous correlations for input signals with 

frequencies which are odd multiples of the reference signal frequency. 

When both clipping and sampling are employed, each odd harmonic 

correlation response is repeated at periodic intervals which are 

related to the sampling rate, thus giving rise to the odd harmonic 

problem.    When a sinusoid is correlated with a narrowband random 

function,  the quadrature correlation function variance versus sampling 

rate curve approaches its high sampling rate asymptote more slowly 

than in the large    TW   signal case,  and the second harmonic  ripple is 

more pronounced. 

After proposing nonuniform block sampling as a possible solution 

'.o the odd harmonic problem in the correlation function of clipped and 

sampled sinusoids, the spectral properties of block sampling were 

analyzed.    Although other studies have considered block sampling from 

the points of view of signal reconstruction from sampled values 

[hi, 2k], sampling interval statistics  [?],  and sampled-data control 

system analysis  [36], they did not analyze the basic properties of the 

sampling function or its frequency spectrum which are necessary for a 

study of correlation functions of nonuniformly sampled signals. 

Accordingly, this thesis examined in detail the complex frequency 

spectrum properties of ideal (zero sampling pulse width) block sampling 

Jd 
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functions including amplitude and phase characteristics of each spectral 

component, spectral periodicity conditions, conservation of spectral 

energy properties, and conditions for minimum variance of the sampling 

power spectrum.    The significant sampling spectrum parameter was shown 

to be the complex sampling coefficient    a. ,    given by 

t 
N -j27tk=2 

a      -   i       V       e P ak N       /I        e ' 
n-1 

x u 
where k is an integer designating the k  spectral component, t 

are the nonuniform sampling times, T  is the block repetition period 

in seconds, and N is the number of samples per block. Conditions 

on t /T  for all values of n were derived such that a. will be 

periodic; i.e., such that a.  = a. „ for some K and all k. A 

power spectrum conservation property was established stating that the 
2 

taken over one spectral period   K   was average value of 
** 

equal to l/N independent of the specific sampling times t . Thus, 

each block sampling function with N samples per block (of which 

uniform sampling is a special case) merely redistributes a fixed amount 

of spectral energy as a function of frequency. Although the average 
2 

value of  a,.   was shown to be a constant equal to l/N independent 
2 

of the sampling times t , the variance of was found to be 

very dependent on the specific sampling times    t  ,    Accordingly, a set 

of conditions on   t     were derived which would minimize the variance of n 

\ If   o K denotes the variance of over one spectral 

period   K,    it was shown that 
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r 
where the lower limit is determined by the minimum variance conditions 

and the upper limit is set by uniform sampling. As an example of 

sampling spectrum shaping; i.e., of controlling the values of a, 

in specific spectral regions, by choice of t , a block sampling 

function example was introduced which used a pseudo-random number 

generator (PRNG) for sampling time selection. Although this sampling 

scheme does not yield a minirmun variance sampling spectrum, it achieves 

ak for small a unique spectrum shaping by suppressing the values of 

k, a property that is important in the reduction of odd harmonic 

responses in correlation functions of clipped sinusoidal signals. 

Finally, having derived the fundamental properties of quadrature 

correlation functions and of nonuniform block sampling, the application 

of block sampling to the reduction of odd harmonics in correlation 

functions of clipped sinusoids was studied. Considering the quadrature 

correlation function Z(T, f,, fR) between two clipped sinusoidal 

signals with block sampling as a function of the two sinusoidal 

frequencies f-p and f_, it was shown that, although the odd harmonic 

responses are greatly reduced, certain combinations of input frequency 

f-j. and reference frequency fR result in correlations whose average 

value is greater than those for other values of fT and fR. These 

significant combinations of fT and f_, which are called Worst Case 

combinations, are given by the equations 
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^1    ^   mi/Tp • 

4fR   =   ""A 

(fI-fR)    =   md/Tp    ' 

where   mT, nip, and m.    are integers.    Based on an analytical model 

similar to one used by Tou [36], an expression relating the correlation 

function at these Worst Case frequencies to the sampling function 

coefficients    a.     and the signal odd harmonics was obtained.    This 

expression was useful for studying the effect of each odd harmonic 

on the correlation function as well as for demonstrating the 

effectiveness of the small   k   suppression property of PRNG sampling 

functions in reducing the correlation function amplitude for the 

Worst Case conditions.    This model was also useful for obtaining sor.ie 

average correlation characteristics taken over all Worst Case frequency 

combinations.    Some experimental results,  based on a digital computer 

simulation, were obtained to verify the theoretical correlation function 

model.    Both the analysis and the experimental results confirmed that, 

by proper choice of sampling parameters, block sampling could reduce 

the undesirable odd harmonic correlation function responses due to 

clipping and sampling by any desired degree. 
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6.U        Suggestions for Further Research 

The quadrature correlation function properties obtained in 

f Chapters II and III were derived for single input and reference 

signals. In many applications, it is important to consider sums of 

signals [23] or signals plus random noise processes [30] instead of 

single signals. In the possible extension ^f the results of 

Chapters II and III to these cases, of particular interest would be 

the effects of hard limiting and uniform sampling on the quadrature 

correlation functions of narrowband signals--especially sinusoids. 

Throughout this thesis, only extreme signal quantization 

(i.e., hard limiting) was considered.    However, because, of the wide 

spread use of digital computers and other digital devices to calculate 

correlation functions, it is also important to study other levels of 

quantization.    For example,  since all computers have finite word 

length,  some degree of round-off (i.e.,  quantization) is always 

present. 

In the analysis of the sampling function spectrum of Chapter IV, 

' 2 the sampling spectrum variance    aK     was minimized over a complete 

spectral period.    Many times, however, an entire spectral period need 

not be considered.    In these cases, it would be more meaningful to 

minimize the spectrum variance over an arbitrary spectral range at the 

expense of spectral amplitudes out of the range of interest.     In 

addition to optimizing the spectrum variance by choice of sampling 

^T times, it might also be possible to fix the nonuniform sampling times 

and minimize the sampling spectrum variance by the choice of amplitude 
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weighting coefficients for each sample. Another more difficult related 

problem is the synthesis problem of specifying the exact desired shape 

of the sampling spectrum and finding a set of sample times which yields 

this spectrum (or a closest fit to it). 

In Chapters IV and V, out of many possible specific nonuniform 

block sampling schemes, only FRNG sampling was studied in detail. 

Many other intersting sampling schemes for further study suggest 

themselves, such as using a probability law (Gaussian, Poisson, etc.) 

to select the nonuniform sampling times or restricting the freedom of 

each sample within the sampling block. For the PRNG sampling scheme 

studied, additional comparative analysis of the effects of specific 

pseudo-random codes are suggested. 
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r APPENDIX 

CORRELATION FUNCTION VARIANCE FOR RANDOM PROCESS 

INPUT SIGNALS WITH RECTANGULAR POWER SPECTRUM 

We wish to compute the correlation function variance for a 

typical example where the input and reference signals are assumed to 

be random variables with Gaussian distributions and to be represented 

by 

x(t) = a n(t) = a (Nn cos u t - N0 sin w t) v "    n        nv 1    o   2    o ' (A.l) 

and 

y(t) = s(t) = E.. cos to t - E. sin w t JV /    s   ' l    o   2    o (A.2) 

Assume that the power spectrum of both s(t) and n(t) are equal and 

given by 

r 

r i 
2W 

2«WK ^  ^ /   L 2nWN -      1 < CO < (-U)  + —— 
0   2 ; -  - ^ 0   2 ir; , for (-w - ^) < u) < (-UU + ^) s 

P (co) = P (ü) =< ir; , for (UJ . ^H) < co < (u) + ^) , 
s       nx/  12W,    vo   2  —  —  o   2' 

0 elsewhere . 

(A.3) 
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The correlation functions of both s(t) and n(t) are, 

therefore, 

O»    (T)    = 
ssv   ' nn ('' = fc P»   eJUTdw s 

sinitWr 
-rth—     cos WoT- (A.4) 

Also, 

*s^ 
.    i   \ sin nWT 

(A.5) 

\^  ^    - V2
(T)=X\(T) = %E2

(T) = ^ ' (A-6) 

\N2 W   -   \E2 (^   =   o , (A.7) 

*      (T)    =   a ^    4>      (T) xx. K   J n       nn *•   ^ (A.8) 

and 

t»      (T)    =    0      (T) (A.9) 

For the regular correlation function,  aB    from Equation (2.40) is 

;'     < 

M 

n 
2TWi 

~      M     + IT       /.   U " M; 

'sin «WmT 

nVftnT 
m=l s 

B !        cos2 CJ mT      (A. 10) o    s 

1 
R 

2 f M      /         mit \ o 
1   + ?        )       l—Jl 2 mitvr    H       nu 1 + 2        >      I— I cos   -£—    (1 - -) 

M ,   .    n 
V^ /sin 7 

/_ mit 
m=l \     2R 

,    (A.ll) 
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r. 

where R 

T 

M 

and 

f s 

f /2w = ratio of sampling rate to Shannon rate, s 

signal duration, 

total samples in T seconds 

l/T  - sampling rate, s 

Equation (A.11) is plotted in Figure 2.6 for f /W = 9 and 

2TW = 50. 

For the quadrature correlation, an  from Equation (2.^6) is 

given by 

fnj 
2TW/ 

1 
R 1 + 2 

M/2  / . mn fsinj- 

mit 

m=l  ( R 

(1 - —) (A.12) 

where R = f /W and f  = l/2T . Equation (A.12) is plotted in s        s       s 

Figure 2.7 for f /W = 9 and 2TW = 50. 0 ,\w. 
2 

For the clipped signal case, from Equation (2.59), 0  for •        Q 

quadrature correlation is 

/vvws 
2 r M/2   ._ 

[_ '        m=l ^ 

sin gi 2^ m\' 
R 0 cos mn 

R 
WR 

sin 
-1 /sin =- 2jtf m' n , o sin 

nut 
R 

WR y-f )> (A.13) 

G 
as shown in Figure 2.9.    The corresponding regular correlation function 

variance 
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^  "   ra=l u    l 2R 

(A.lM 

is plotted in Figure 2.10. 

I   i 
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